К. т. н. В. И. ЧАСНЫК

УДК 622.3.032.266

Украина, г. Киев, НИИ «Орион» E-mail: ndiorion@tsua.net

Дата поступления в редакцию $024.02\ 2011\ \Gamma$.

ФОКУСИРОВКА ИНТЕНСИВНЫХ ЭЛЕКТРОННЫХ ПОТОКОВ В СПИРАЛЬНОЙ ЛБВ С МПФС С НЕСИНУСОИДАЛЬНЫМ ПОЛЕМ

Показана возможность использования МПФС с несинусоидальным полем для фокусировки электронных потоков в высоковольтных ЛБВ при достаточных для практики уровнях токопрохождения пучка на коллектор ЛБВ

Интерес разработчиков мощных спиральных ЛБВ к применению в них для фокусировки интенсивных электронных пучков магнитной периодической фокусирующей системы (МП Φ C) с несинусоидальным распределением магнитной индукции вызван тем, что ее использование позволяет не только фокусировать интенсивные электронные потоки в ЛБВ [1—6], но и значительно повысить устойчивость работы спиральной высоковольтной ЛБВ к самовозбуждению на обратной волне [7].

В [4] рассмотрены оптимальные условия согласования электронного пучка с магнитным полем МПФС, содержащим высшие гармонические составляющие магнитной индукции (3-я и 5-я гармоники), и приведены расчеты по влиянию отклонений параметров пучка и переходной области от оптимальных на величину пульсаций электронного пучка. Однако, несмотря на эти расчеты, при практическом использовании МПФС с несинусоидальным полем для фокусировки пучка в спиральной ЛБВ не удалось получить хорошее токопрохождение на коллектор при параметре магнитного поля α≥1,0. В случае же когда $\alpha > 1,25$, токопрохождение не превышало 25% для рассмотренных распределений поля и периодов МПФС [3]. Отсутствие хорошего токопрохождения в высших областях устойчивого формирования электронного потока авторы объяснили сильным влиянием неоднородностей фокусирующей системы. Вместе с тем, известно, что при вводе пучка с радиальной составляющей скорости пульсации увеличиваются и значительно уменьшается устойчивость формирования при больших а. Поэтому при работе в высших областях устойчивости согласованию электронной пушки с полем и обеспечению ламинарности пучка в пушке должно уделяться особое внимание [2].

В [2, 4] проведены теоретические расчеты по определению влияния величины индукции магнитного поля в первой магнитной линзе МПФС на токопрохождение [4] и на величину пульсации границы электронного пучка [2]. Эти расчеты показали существенное

влияние магнитной индукции в первой линзе МПФС как на прохождение, так и на контур электронного пучка во второй области устойчивости. Кроме того, в [4] подчеркивается, что устойчивость фокусировки при увеличении переходной области, как правило, возрастает, а это означает увеличение роли магнитного поля на входе МПФС в формировании пучка в переходной области.

В настоящей работе было экспериментально исследовано влияние величины магнитной индукции в первой линзе МПФС на токопрохождение интенсивных электронных пучков в спиральных ЛБВ с МПФС с несинусоидальным распределением магнитной индукции с периодами и уровнями фокусирующего магнитного поля, при которых $\alpha > 1,0$.

Оптимальные значения амплитуд третьей и пятой гармоник осевого распределения магнитной индукции в МПФС с несинусоидальным полем

Как известно [1], первая область неустойчивой фокусировки электронного потока отсутствует при условии распределения магнитной индукции в виде

$$B_z(z) = B_{z1} \left(\cos \frac{2\pi}{L} z - 0.5 \cos \frac{6\pi}{L} z \right), \tag{1}$$


где L — период МПФС;

 B_{z1} — амплитуда первой гармоники поля.

Распределение магнитной индукции в соответствии с выражением (1) создается за счет шунтирующего кольца толщиной g_1 , которое располагается в зазоре величиной g между полюсными наконечниками магнитной системы. Расчет МПФС, у которой внутренний диаметр шунтирующего кольца равен диаметру отверстия в полюсном наконечнике d, приведен в [8].

Типичное распределение продольной составляющей магнитной индукции на оси МПФС с несинусоидальным полем представлено на **рис. 1**, где показана величина магнитной индукции на входе МПФС ($B_{z\,{\rm BX}}$), а также ее максимальное и минимальное значения ($B_{z\,{\rm max}}$ и $B_{z\,{\rm min}}$). Как показывает гармонический анализ распреде-

Как показывает гармонический анализ распределения магнитной индукции на оси таких систем, при выполнении условия $B_{z3}/B_{z1}=0,5$ в большинстве случаев в распределении магнитного поля присутствует отрицательная пятая гармоника довольно высокого уровня. Поэтому в данной работе рассматривались

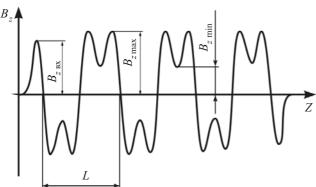


Рис. 1. Распределение магнитной индукции на оси МПФС с несинусоидальным полем

МПФС с несинусоидальным полем, у которых в распределении осевой компоненты магнитной индукции присутствует первая, третья и пятая гармоники поля:

$$B_z(z) = B_{z1} \left(\cos \frac{2\pi}{L} z - a_3 \cos \frac{6\pi}{L} z - a_5 \cos \frac{10\pi}{L} z \right), (2)$$

где $a_3 = B_{z3}/B_{z1}$; $a_5 = B_{z5}/B_{z1}$ (здесь и далее a_i — относительная амплитуда i-й гармоники магнитного поля)

Спектр гармоник поля является одним из основных факторов, существенно влияющих на устойчивость интенсивных электронных потоков в поле МПФС [6]. При определенных соотношениях между третьей и пятой гармониками поля появляются дополнительные зоны неустойчивости, изменяются границы зон устойчивости и неустойчивости.

Известно, что первая область неустойчивости отсутствует, когда коэффициент θ , [5] равен нулю:

$$\theta_2 = \alpha(0.5 + a_3 + a_3 a_5 + a_5 a_7 + a_7 a_9). \tag{3}$$

Здесь параметр магнитного поля α вычисляется по формуле

$$\alpha = 2,78 \cdot 10^8 L^2 B_{z1}^2 / U_0$$

где U_0 – ускоряющее напряжение.

Следует отметить, что при определении численных значений параметра α , а также других, вычисляемых в статье, использовалась система СИ.

Уровень третьей гармоники определяется в основном длиной шунтирующего кольца g_1 , а уровень пятой гармоники зависит от соотношения размеров d/L и g/L. С уменьшением зазора g между полюсными наконечниками, амплитуда отрицательной пятой гармоники возрастает особенно сильно в области значений d/L<0,15. Так, например, при g_1/L =0,145 (обеспечивающем a_3 =-0,5), d/L=0,1 и g/L=0,3 имеем a_5 =-0,57, т. е. уровень пятой гармоники больше, чем третьей. Соответственно увеличивается коэффициент θ_2 : θ_2 =0,254 при α =1,0, что уже может оказать заметное влияние на границы зон устойчивости.

Уровни седьмой и девятой гармоник магнитного поля, рассчитанные в области значений $g/L \ge 0.35$ и d/L > 0.15, на порядок меньше, чем уровни третьей и пятой гармоник. Поэтому произведениями $a_5 a_7$ и $a_7 a_9$ в выражении (3) можно пренебречь как величинами второго порядка малости. С учетом этого выражение для коэффициента θ_2 примет вид

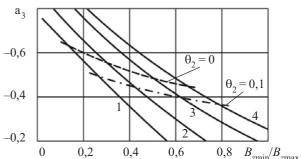


Рис. 2. Зависимость амплитуды третьей гармоники магнитной индукции от отношения $B_{z\min}/B_{z\max}$ в МПФС с несинусоидальным полем для разных значений пятой гармоники: $1-a_5=-0.2; 2-a_5=-0.1; 3-a_5=0; 4-a_5=0.1$

$$\theta_2 = \alpha(0.5 + a_3 + a_3 a_5). \tag{4}$$

Наилучшие условия фокусировки электронного потока (при которых отсутствует первая область неустойчивости) обеспечиваются при оптимальном значении θ_2 , равном 0. На **рис. 2**, где приведены зависимости $a_3 = f(B_{zmin}/B_{zmax})$, приведена также штриховая кривая, в каждой точке которой уровни третьей и пятой гармоник поля таковы, что $\theta_2 = 0$ в соответствии с соотношением (4).

Анализ зависимостей, представленных на рис. 2, позволяет сделать следующий вывод: чтобы находиться в области устойчивой фокусировки электронного потока необходимо, чтобы с ростом амплитуды отрицательной пятой гармоники a_5 от 0 до 0,2 соответственно возрастал и уровень отрицательной третьей гармоники a_3 от 0,5 до 0,65. Следует отметить, что такая зависимость между амплитудами третьей и пятой гармоник магнитного поля сохраняется и при значениях коэффициента θ_2 , несколько отличающихся от оптимального, например когда θ_2 =0,1 (штрихпунктирная кривая на рис. 2).

Таким образом, при наличии пятой гармоники поля, как положительной, так и отрицательной, расширяется диапазон возможных геометрических размеров полюсных наконечников и шунтирующих колец, при которых отсутствует первая область неустойчивости. Следует отметить, что этот диапазон максимален для МПФС с несинусоидальным полем, у которых g/L>0,4. Так, например, для $a_3=-0,5$ и $\alpha=1,0$ при g/L=0,45 коэффициент $\theta_2=0$ для любого значения отношения g/L в интервале от 0,01 до 0,38, а при g/L=0,4 коэффициент $\theta_2<0,05$ в интервале 0,15< d/L<0,35.

Однако при проектировании ЛБВ в целом не всегда возможно в МПФС с несинусоидальным полем выполнить условие g/L>0,4 по конструктивным соображениям, а при g/L<0,35 практически невозможно выбрать такие размеры шунтирующего кольца и полюсных наконечников МПФС, которые обеспечивали бы оптимальные условия устойчивости пучка. Поэтому при разработке МПФС с несинусоидальным полем представляет практический интерес определение возможных отклонений коэффициента θ_2 от оптимального, т. е. значения $\theta_2\neq 0$, при которых можно сформировать мощный электронный пучок и получить приемлемое токопрохождение на коллектор ЛБВ. Рассмотрим пути решения этой задачи.

Таблица 1

Результаты экспериментального исследования

Экспериментальное исследование токопрохождения в МПФС с несинусоидальным распределением магнитной индукции в статическом режиме работы проводились на макете прибора и на мощных импульсных ЛБВ в динамическом режиме.

Одним из основных требований, предъявляемых к мощным импульсным ЛБВ, является наличие низковольтного управления электронным потоком. Поэтому при проведении эксперимента использовалась электронная пушка с сеточным управлением. Оптика электронной пушки приведена в [9, рис. 1]. Электронная пушка имела первеанс около 0,9·10⁻⁶ A/B^{3/2}, диаметр пучка на входе МПФС — 1,0 мм. Измерения проводились в импульсном режиме с длительностью импульса 10 мкс в вакууме (1—3)·10⁻⁷ Topp.

Макет прибора состоит из корпуса, в котором устанавливается электронная пушка, баллона из немагнитного материала и коллектора, расположенного на изоляторе в баллоне. Пролетный канал статического макета образуется набором медных втулок, размещенных внутри баллона. Длина пролетного канала составляет 100 мм при его диаметре 1,7 мм. МПФС, закрепленная в оправке, одевается на баллон макета без его разгерметизации и в процессе эксперимента может перемещаться вдоль оси макета. Такая конструкция макета и МПФС позволяла изменять расстояние от анода пушки до входа в МПФС, изменять амплитуду магнитной индукции в первой линзе МПФС, не меняя распределение магнитного поля в регулярной части МПФС. При фиксированном положении МПФС определялось управляющее напряжение на сетке электронной пушки, обеспечивающее наилучшее токопрохождение пучка на коллектор. Коэффициент токопрохождения определялся как

$$\chi = [I_{\text{KOJ}}/(I_{\text{KOJ}} + I_{\text{oc}})] \cdot 100\%,$$

где $I_{\underset{r}{\text{кол}}}$ — ток коллектора;

 $I_{\rm oc}$ — ток оседания в пролетном канале макета или спиральной ЛБВ с тем же диаметром пролетного канала (1,7 мм).

Для уменьшения краевых эффектов в рассматриваемой МПФС осевой размер крайних магнитов был выбран равным четвертой части периода. Концевые полюсные наконечники МПФС (первый и последний) размещаются в плоскостях симметрии, где индукция на оси пролетного канала минимальна ($B_{\rm 2min}$) или, по терминологии [2], находится в «провале» магнитного поля. Кроме того, концевые полюсные наконечники закорачиваются на экран, т. е. одновременно являются деталями экрана и магнитной системы. Все эти особенности рассматриваемой МПФС позволяют значительно уменьшить падение индукции на краях системы.

Параметры трех исследуемых МПФС приведены в **табл. 1**, где β =3,84·10² L^2 · $\Pi_{\rm n}/r_{\rm BX}^2$ — параметр пространственного заряда, $\Pi_{\rm n}$ = $I_0/U_0^{3/2}$ — первеанс, I_0 — полный ток пучка. Указанные в таблице значения E получены из выражения E= $(B_{z \ \rm BX}/B_{z1})^2$, такого же, как и в [2], для возможности сопоставления экспериментальных результатов, полученных в настоящей

№ $B_{z\mathrm{Bx}}$, B_{z1} , Eβ L, mm-a3 -a₅ Π/Π Тл Тл 1 22,4 0,32 0,32 0,44 1,0 0,7 0,12 2 0,265 2.6 0,265 0,45 0,18 1,0 0,9 0,29 3 30 1,0 0,29 0,48 0,17 1,1

Параметры исследуемых МПФС

работе, с теоретическими расчетами, выполненными в [2].

Из приведенных на **рис. 3** экспериментальных зависимостей видно, что с уменьшением магнитного поля в первой линзе оптимум коэффициента токопрохождения смещается к большим значениям α , которым соответствуют меньшие ускоряющие напряжения. Так, $\chi>85\%$ для E=0,64 в интервале $1,6<\alpha<1,95$ ($U_0=10$ —12 кВ). Кроме того, существует область значений параметра магнитного поля, в которой коэффициент токопрохождения слабо зависит от величины магнитной индукции в первой линзе МПФС. Так, $\chi\geq83\%$ при $1,55<\alpha<1,65$ ($U_0=11,8$ —12,5 кВ) и любых E в интервале от 0,64 до 1,07.

На рис. 4 приведена зависимость максимального радиуса пучка ρ_{max} от параметра α , построенная на основании данных [2, рис. 9, a]. Анализ зависимостей, приведенных на рис. 3 и 4, показывает, что ход экспериментальных кривых $\chi=f(\alpha)$ для E=1,07 и E=0,64 довольно хорошо согласуется качественно с расчетными кривыми $\rho_{\text{max}}=f(\alpha)$ для E=1,0 и E=0,6 во всем исследованном интервале α . Так, например, при уменьшенном поле в первой линзе и $\alpha>1,6$ начинаются зоны наилучшего токопрохождения ($\chi=86\%$) и наименьших пульсаций границы пучка. Также, в

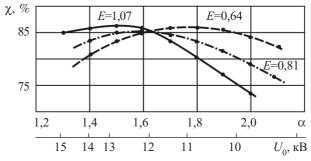


Рис. 3. Зависимость коэффициента χ от параметра α для различных амплитуд E в первой линзе МПФС с периодом 30 мм при a_3 =-0,46, a_5 =-0,19, β = 1,1

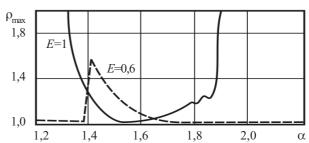


Рис. 4. Зависимость $\rho_{\rm max}$ от параметра α для различных амплитуд E при a_3 =-0,45, a_5 =0, β = 0,6 (для случая ввода пучка в «провал» поля [2])

СВЧ-ТЕХНИКА

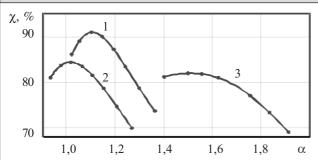


Рис. 5. Зависимость коэффициента χ от параметра α для различных периодов МПФС (номера кривых соответствуют номерам МПФС в табл. 1):

1 — 22,4 мм; 2 — 26 мм; 4 — 30 мм

интервале значений 1,6< α <1,7 наблюдается наилучшее токопрохождение, а ρ_{max} <1,08 для 0,6<E<1,0. Проведенные исследования показали, что улучше-

Проведенные исследования показали, что улучшение согласования МПФС с электронной пушкой за счет изменения амплитуды магнитного поля в первой линзе магнитной системы и других параметров МПФС с периодом 30 мм привело к увеличению токопрохождения электронного пучка, которое максимально в диапазоне $1,4<\alpha<1,6$ (рис. 5). Вместе с тем, следует заметить, что уменьшение поля в первой линзе целесообразно только в том случае, когда можно обеспечить запас по величине магнитной индукции [2].

В результате проведенных исследований по токопрохождению в статическом режиме макета МПФС с несинусоидальным полем были определены условия, обеспечивающие наилучшее согласование магнитной системы с электронной пушкой, экранированной от магнитного поля. С учетом этих исследований, с каждой МПФС были собраны и испытаны спиральные ЛБВ с током катода $I_{\rm кат}$ =1,2—1,3 A, U_0 =12,0—14,0 кВ, диаметром спирали 1,7 мм, длиной пролетного канала 95 мм.

Результаты измерений приведены в **табл. 2**. Амплитуда магнитного поля в первой линзе магнитного поля для всех трех МПФС равнялась амплитуде первой гармоники магнитной индукции.

Как и при статических испытаниях на макете прибора, самое высокое токопрохождение в динамическом режиме $\chi=87\%$ наблюдалось в ЛБВ с МПФС с периодом 22,4 мм при величине параметра магнитного поля $\alpha\approx1,1$. Из анализа результатов токопрохождения в ЛБВ с периодами МПФС 26 и 30 мм можно сделать вывод, что при практически одинаковых уровнях третьей и пятой гармоник и близкими значениями коэффициента θ , фокусировка интенсивных элек-

Таблица 2 Величина токопрохождения в ЛБВ с МПФС с несинусоидальным полем в статическом и динамическом режимах

№ п/п	<i>L</i> , мм	θ_2	Статический режим			Динамический режим
			α	U_0 , кВ	χ, %	χ, %
1	22,4	0,12	1,1	12,8	91	87
2	26	0,14	1,05	12,8	85	78
3	30	0,15	1,53	13,8	82	75

тронных потоков во второй полосе устойчивости (α >1,4) более чувствительна к отклонениям условий от оптимальных, чем в первой полосе устойчивости (при α <1,2).

Таким образом, экспериментально установлено, что при использовании электронной пушки с сеткой для формирования электронного пучка в спиральной ЛБВ с МПФС с несинусоидальным полем при $1,0<\alpha<1,2$ коэффициент токопрохождения в статическом режиме работы ЛБВ составляет 85-91% и 78-85% в динамическом, а при значениях $\alpha>1,4$, соответствующих второй области устойчивости, коэффициент токопрохождения достигает 82% в статике и 75% в динамике.

Проведенные экспериментальные исследования показали возможность использования МПФС с несинусоидальным полем для фокусировки электронных потоков в высоковольтных ЛБВ при достаточных для практики уровнях токопрохождения пучка на коллектор ЛБВ.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Данович И. А. Анализ фокусировки и устойчивости интенсивных пучков в периодических магнитных полях // Изв. вузов. Радиофизика.— 1966.— № 2.— С. 351—361. [Danovich I. A. // Izv. vuzov. Radiofizika. 1966. N 2. P. 351]

2. Данович И. А., Кожушный В. А. Особенности формирования электронных потоков периодическими магнитными полями в неоптимальных режимах // Известия вузов СССР. Радиоэлектроника. — 1971. — Т. XIY, № 9. — С. 1085—1094. [Danovich I. A., Kozhushnyi V. A. // Izvestiya vuzov SSSR. Radioelektronika. 1971. Vol. XIY. N 9. P. 1085]

Vol. XIY, N 9. P. 1085]

3. Бахрах Л. Э., Мурзин В. В., Беляев В. К. Исследование фокусировки электронных пучков МПФС с негармоническим распределением поля // Электронная техника. Сер. 1. Электроника СВЧ.— 1978.— Вып. 10.— С. 39—46. [Bakhrakh L. E., Murzin V. V., Belyaev V. K. // Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1978. Iss. 10. P. 39]

1978. Iss. 10. P. 39]
4. Бахрах Л. Э., Газукин В. А., Мурзин В. В. Формирование электронных пучков в переходной области МПФС с негармоническим распределением поля // Электронная техника. Сер. 1. Электроника СВЧ.— 1978.— Вып. 11.— С. 60—66. [Bakhrakh L. E., Gazukin V. A., Murzin V. V. // Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1978. Iss. 11. P. 60]

5. Данович И. А. Формирование электронных потоков периодическими магнитными полями с несинусоидальным осевым законом распределения индукции. // Электронная техника. Сер. 1. Электроника СВЧ.— 1966.— Вып 9.— С. 20—29. [Danovich I. A. // Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1966. Iss 9. P. 20]

6. Голеницкий И. И. Устойчивость интенсивных электронных потоков в МПФС с несинусоидальным распределением магнитного поля. //Электронная техника. Сер. 1. Электроника СВЧ.—1990. — Вып. 5.— С. 38—43. [Golenitskii I. I. // Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1990. Iss. 5. P. 38]

7. Часнык В. И. Устойчивость к самовозбуждению на обратной волне спиральной ЛБВ с МПФС с несинусоидальным полем //Техника и приборы СВЧ.— 2009.— № 2.— С. 3—7. [Chasnyk V. I. // Tekhnika i pribory SVCh. 2009. N 2. P. 3]

8. Данович Й. А., Митус А. Ф. Расчет и моделирование периодических магнитных систем приборов СВЧ // Известия вузов СССР. Радиоэлектроника.— 1972.— Т. XV, № 8.— С. 969—976. [Danovich I. A., Mitus A. F. // Izvestiya vuzov SSSR. Radioelektronika. 1972. Vol. XV, N 8. P. 969]

9. Ищенко А. И., Лось В. С., Паничевский В. А., Часнык В. И. Разработка ЭОС с высокой компрессией и низковольтным управлением электронным потоком // Тез. докл. ... «Периодическая, электростатическая и магнитная фокусировка электронных пучков».— М.: ЦНИИ «Электроника», 1973. Сер. 1. Электроника СВЧ.— Вып. 1 (13).— С. 37—39. [Ishchenko A. I., Los' V. S., Panichevskii V. A., Chasnyk V. I. // Tez. dokl. ... «Periodicheskaya, elektrostaticheskaya i magnitnaya fokusirovka elektronika yloros. Ser. 1. Elektronika SVCh. Moscow. TsNII «Elektronika», 1973. Iss. 1 (13). P. 37]