Synthesis and study of strontium ferromolybdate nanopowders with high degree of superstructural ordering for spintronics

  • M. V. Yarmolich Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus
  • N. A. Kalanda Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus
  • S. E. Demyanov Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk, Belarus
  • M. V. Silibin National Research University of Electronic Technology “MIET”, Moscow, Russia
  • G. G. Gorokh Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
Keywords: strontium ferromolybdate, citrate-gel method, superstructural ordering, redistribution of the electron density, magnetization, superparamagnetic state

Abstract

The metal oxide compounds Sr2FeMoO6-δ systems with an ordered double perovskite structure due to their unique and extremely important magnetotransport and magnetic properties are among the most promising materials for spintronic devices. In the present work, we investigated the correlation between the citrate-gel synthesis conditions (pH of initial solutions and annealing temperature) and the microstructure, phase transformations and magnetic properties of the Sr2FeMoO6-δ nanopowders. According to the results, the average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing of pH values. Single-phase nanosized Sr2FeMoO6-δ powders had various degrees of superstructural ordering of Fe3+ and Mo5+ (P = 65% for pH = 4, P = 51% for pH = 6 and P = 20 % for pH = 9). With increasing of pH, the Fe2+ concentration increases from 63% to 72%, and the Fe+3 concentration drops from 37% to 28%. According to the results of investigations of magnetization temperature dependence in Sr2FeMoO6-δ powders, a metastable superparamagnetic state was established at TS<19 K in low-dimensional grains. An optimized synthesis procedure, based on an initial solution of pH = 4, has allowed obtaining a single-phase Sr2FeMoO6-δ compound having grain size in the range of 50 – 120 nm and a superstructural ordering of iron and molybdenum cations of 88%. The optimum conditions of synthesis of nanopowders strontium ferromolybdate allow for the directional change of the phase composition of the synthesized nanosized ceramic with reproducible physical and chemical properties.

References

Fix T., Barla A., Ulhaq-Bouillet C., Colis S., Kappler J.P., Dinia A. Absence of tunnel magnetoresistance in Sr2FeMoO6-based magnetic tunnel junctions. Chem. Phys. Lett., 2007, vol. 434, iss. 4-6, pp. 276-279. http://dx.doi.org/10.1016/j.cplett.2006.12.020

Kovalev L., Yarmolich M., Petrova M., Ustarroz J., Terryn H., Kalanda N., Zheludkevich M. Double perovskite Sr2FeMoO6 films prepared by electrophoretic deposition. ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 21, pp. 19201-19206. http://dx.doi.org/10.1021/am5052125

Niebieskikwiat D., Caneiro A., Sánchez R. D., Fontcuberta J. Oxygen-induced grain boundary effects on magnetotransport properties of Sr2FeMoO6–δ. Phys. Rev. B, 2001, vol. 64, iss. 18, pp. 1804061-1804064. http://dx.doi.org/10.1103/PhysRevB.64.180406

Huang Y.H., Lindén J., Yamauchi H., Karppinen M. Large low-field magnetoresistance effect in Sr2FeMoO6 homocomposites. Appl. Phys. Lett., 2005, vol. 86, iss. 7, pp. 0725101-07251013. http://dx.doi.org/10.1063/1.1864241

Kalanda N.A., Gorokh G.G., Yarmolich M.V., Lozovenko A.A., Kanyukov E.Yu. Magnetic and magnetoresistive properties of Al2O3–Sr2FeMoO6–δ–Al2O3 nanoheterostructures. Phys. Solid State, 2016, vol. 58, iss. 2, pp. 341-349. http://dx.doi.org/10.1134/S1063783416020128

Shinde S.R., Ogale S.B., Greene R.L., Venkatesan T., Tsoi K., Cheong S.-W., Millis A.J. Thin films of double perovskite Sr2FeMoO6: Growth, optimization, and study of the physical and magnetotransport properties of films grown on single-crystalline and polycrystalline SrTiO3 substrates. J. Appl. Phys, 2003, vol. 93, iss. 3, pp. 1605-1612. http://dx.doi.org/10.1063/1.1533831

Santiso J., Figueras A., Fraxedas J. Thin films of Sr2FeMoO6 grown by pulsed laser deposition: preparation and characterization. Surf. Interface Anal., 2002, vol. 33, iss. 33, pp. 676-680. http://dx.doi.org/10.1002/sia.1435

Sarma D. D., Mahadevan P., Ray S., Kumar A. Electronic Structure of Sr2FeMoO6. Phys. Rev. Lett., 2000, vol. 85, iss. 12, pp. 2549-2552. http://dx.doi.org/10.1103/PhysRevLett.85.2549

Klencsár Z., Németh Z., Vértes A., Kotsis I., Nagy M., Cziráki Á., Ulhaq-Bouillet C., Pierron-Bohnes V., Vad K., Mészáros S., Hakl J. The effect of cation disorder on the structure of Sr2FeMoO6 double perovskite. J. Magn. Magn. Mater., 2004, vol. 281, iss. 1, pp. 115-123. http://dx.doi.org/10.1016/j.jmmm.2004.04.097

Rager J., Zipperle M., Sharma A., MacManus-Driscoll J. L. Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO—Fe3O4—MoO3. J. Am. Ceram. Soc., 2004, vol. 87, iss. 7, pp. 1330-1335. http://dx.doi.org/10.1111/j.1151-2916.2004.tb07730.x

Kang J.-S., Kim J. H., Sekiyama A., Kasai S., Suga S., Han S. W., Kim K. H., Muro T., Saitoh Y., Hwang C., Olson C. G., Park B. J., Lee B. W., Shim J. H., Park J. H., Min B. I. Bulk-sensitive photoemission spectroscopy of A2FeMoO6 double perovskites (A=Sr, Ba). Phys. Rev. B, 2002, vol. 66, iss. 11, pp. 1131051-11310514. http://dx.doi.org/10.1103/PhysRevB.66.113105

Kalanda N.A., Kovalev L.V., Waerenborgh J.C., Soares M.R., Zheludkevich M.L., Yarmolich M.V., Sobolev N.A. Interplay of superstructural ordering and magnetic properties of the Sr2FeMoO6–δ double perovskite. Science of Advanced Materials, 2015, vol. 7, no. 3, pp. 446-454. http://dx.doi.org/10.1166/sam.2015.2134

Topwal D., Sarma D. D., Kato H., Tokura Y., Avignon M. Structural and magnetic properties of Sr2Fe1+xMo1–xO6 (–1≤x≤0.25). Phys. Rev. B, 2006, vol. 73, iss. 9, pp. 0944191-0944195. http://dx.doi.org/10.1103/PhysRevB.73.094419

Kobayashi K.-I., Kimura T., Sawada H., Terakura K., Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, vol. 395, pp. 677-680. http://dx.doi.org/10.1038/27167

Yаrmolich M.V, Kalanda N.A., Dem’yаnov S.E., Gurskii L.I., Kovalev L.V., Galyаs A.I. [Magnetism in nanoscale powders of ferro strontium molybdate]. Doklady BGUIR, 2016, no. 3(97), pp. 63-68. (Rus)

Frolov G. I., Bachina O. I., Zav’yalova M. M., Ravochkin S. I. Magnetic properties of nanoparticles of 3d metals. Technical Physics, 2008, vol. 53, iss. 8, pp. 1059-1064. http://dx.doi.org/10.1134/S1063784208080136

Gubin S. et al. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, vol. 74, iss. 6, pp. 489-520. http://dx.doi.org/10.1070/RC2005v074n06ABEH000897

Suominen T., Raittila J., Salminen T., Schlesier K., Lindén J., Paturi P. Magnetic properties of fine SFMO particles: Superparamagnetism. J. Magn. Magn. Mater., 2007, vol. 309, iss. 2, pp. 278-284. http://dx.doi.org/10.1016/j.jmmm.2006.07.016

Published
2016-06-29
How to Cite
Yarmolich, M. V., Kalanda, N. A., Demyanov, S. E., Silibin, M. V., & Gorokh, G. G. (2016). Synthesis and study of strontium ferromolybdate nanopowders with high degree of superstructural ordering for spintronics. Technology and Design in Electronic Equipment, (2–3), 41-48. https://doi.org/10.15222/TKEA2016.2-3.41