Thermal characteristics of the liquid heat exchanger for the transmitter/reciever module of AРAA
Abstract
The paper presents the results on numerical simulation of the temperature field of a cold plate type liquid heat exchanger for a multichannel transmitter/receiver module. Each side of the cold plate carries 8 local microwave fuel elements with a heat dissipation capacity of 11 W each and one block with low-power electronic elements (total power of all elements — 50 W), installed symmetrically on both sides. The total heat dissipation capacity is 276 W. The cold plate is cooled by pumping a liquid heat carrier (Antifreeze A 65) through a curved cooling channel of rectangular cross-section made inside the liquid heat exchanger. The study was conducted at a working fluid flow rate of 2, 4, 6, 8 and 10 l/min. Numerical simulation allowed obtaining the temperature distribution of the mounting surfaces of the cold plate and determining the values of the working fluid flow rate, which provide effective cooling of the mounting surfaces. It is shown that at a flow rate of 4 l/min, the temperature values at the installation sites of local microwave elements do not exceed 64°C. The total thermal resistance of the cooling system based on a liquid heat exchanger is from 0.063 to 0.028°C/W with a flow rate from 2 to 10 l/min, respectively.
References
Guz’ V. I., Lipatov V. P., Andrusenko N. I. et al. Multifunctional radar systems. Radioelectronics and Communications Systems, 2007, vol. 50, iss. 1, pp. 1–8, https://doi.org/10.3103/S0735272707010013
Brookner E. Radar and phased array breakthroughs. Microwave Journal, 2015, vol. 58, iss. 11, pp. 20–36.
Borisov O. V., Zubkov A. M., Ivanov K. A. et al. [Broadband 70-watt GaN X-band power amplifier]. Elektronnaya Tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2014, iss. 2 (233), pp. 4–9 (Rus).
Radar technology advancements and new applications, Microwave Journal, 2017, vol. 60, iss. 3, pр. 82–96. (Pasternack Enterprises, Inc., Irvine, Calif. Available at: https://www.pasternack.com/t-Radar-Technology-Advancements-and-New-Applications.aspx)
Herd J.S., Conway M.D. The evolution to modern phased array architectures. Proc. IEEE, 2016, vol. 3, iss. 104, pp. 519–529, https://doi.org/10.1109/JPROC.2015.2494879
Pengelly R.S., Wood S.M., Milligan J.W. et al. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 6, iss. 60, pp. 1764–1783, https://doi.org/10.1109/TMTT.2012.2187535
Choi G.W., Kim H. J., Hwang W. J. et al. High efficiency class-e tuned doherty amplifier using GaN HEMT. 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, рp. 925–928, https://doi.org/10.1109/mwsym.2009.5165849
Kuliev M.V. [Overview of modern GaN transistors and directions of development], Elektronnaya tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2017, iss. 2 (245), pp. 18–28. (Rus)
Rathod S., Sreenivasulu K., Beenamole K. S., Ray K. P. Evolutionary trends in transmit/receive module for active phased array radars. Defence Science Journal, 2018, vol. 68, iss. 6, pp. 553–559, https://doi.org/10.14429/dsj.68.12628
Savenko V. A. [Unification of design solutions for the construction of receiving and transmitting modules APAA of various ranges]. Proc. of All-Russian Conference “Electronics and Microelectronics Microwave”, St. Petersburg, 2013, 5 p. Available at: www.mwelectronics.ru/2013/Oral/5/05_Doclad_Savenko-izmenenny%60i%60.pdf (Rus)
Kopp B. A., Billups A. J., Luesse M. H. Thermal analysis and considerations for gallium nitride microwave power amplifier packagin. Microwave Journal, 2001, vol. 44, iss.12, pp. 72–82.
Timoshenkov V., Khlybov A., Rodionov D. et al. [Thermo researching of X-band micro-wave amplifier]. VIII All-Russian Scientific and Technical Conference “Problems of development of promising micro-and nanoelectronic systems” (MES-2018), Russia, Moscow, 2018, iss. 3, pp. 98–102. https://doi.org/10.31114/2078-7707-2018-3-98-102 (Rus)
Wilson J. Challenges in thermal control of military electronics systems. Electronics cooling, 2003. Available at: https://www.electronics-cooling.com/2003/02/challenges-in-thermal-control-of-military-electronics-systems/
Wang L., Wang Z., Wang C. et al. Multiobjective optimization method for multichannel microwave components of active phased array antenna. Mathematical Problems in Engineering, 2016, vol. 2016, article ID 5398308, 7 p., http://dx.doi.org/10.1155/2016/5398308
Scott M., SAMPSON MFR active phased array antenna. IEEE International Symposium on Phased Array Systems and Technology, 2003, pp. 119–123, https://doi.org/10.1109/past.2003.1256967
Nikolaenko Yu. E., Baranyuk O. V., Reva S. A., Rohachov V. A. [CFD-modeling of the temperature field of the radiator casing of the transmitting module of the active phased antenna arrays with air cooling]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 1–2, pp. 27–33, http://dx.doi.org/10.15222/TKEA2019.1-2.27 (Ukr)
Swadish M.S., Sangram K.P. Thermal design and analysis of an air cooled X-band phased array antenna. 11th International Radar Symposium India 2017 (IRSI-17). Available at: https://www.researchgate.net/publication/321965870
Parlak M., Yaban M. Thermal solution of high flux phased radar antenna for military application. Proceedings of the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Vol. 2. San Francisco, California, USA, 2015, V002T06A008. https://doi.org/10.1115/ipack2015-48055
Jiawei Ge, Dayuan Jin, Zhiwei Qian. Research on heat dissipation technology of the high-power array antenna. Proceedings of the Seventh Asia International Symposium on Mechatronics, LNEE, vol. 589. Springer, Singapore, 2020, рp. 400–412, https://doi.org/10.1007/978-981-32-9441-7_41
Bekishev A. T., Smolyakov A. A., Isakov M. V. et al. [A new approach to cool multichannel SRM in APAR]. Vozdushno-kosmicheskaya sfera, 2018, no. 1(94), pp. 65–69, https://doi.org/10.30981/2587-7992-2018-94-1-64-69 (Rus)
Vasiliev A. G., Kolkovsky Yu. V., Minnebaev V. M. et al. [Solid-state gallium nitride 500-watt pulsed X-band power amplifier]. Elektronnaya tekhnika. Seriya 2. Poluprovodnikovyye pribory, 2011, iss. 1 (226), pp. 83–88. Available at: http://j.pulsarnpp.ru/images/journal/issues/2011/226_2011/Vasilev_83_88.pdf (Rus)
Nenartovitch N. E., Mitiachev M. V. [From practice of active phased antenna arrays development], Vestnik MGTU MIREA, 2014, no. 3, iss. 4, pp. 173-188, https://rtj.mirea.ru/upload/medialibrary/333/13-nenartovich.pdf (Rus).
Trofimov V. Ye., Pavlov A. L. [Intensification of heat transfer in liquid heat exchanger with dimpie-pin finning], Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2016, no. 1, pp. 23–26, https://doi.org/10.15222/TKEA2016.1.23 (Rus)
Trofimov V. Е., Pavlov A. L., Mokrousova E. A. [CFD-simulation of radiator for air cooling of microprocessors in a limitided space]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2016, no. 6, pp. 30–35, https://doi.org/10.15222/TKEA2016.6.30 (Rus)
Trofimov V. Е., Pavlov A. L., Storozhuk A. S. [CFD- simulation of impact jet radiator for thermal testing of microprocessors]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2018, no. 5–6, pp. 30–36. https://doi.org/10.15222/TKEA2018.5-6.30 (Rus)
Nikolaenko Yu. E., Baranyuk A. V., Reva S. A. et al. Numerical simulation of the thermal and hydraulic characteristics of the liquid heat exchanger of the APAA transmitter-receiver module. Thermal Science and Engineering Progress, 2020, vol. 17, art. no. 100499, 11 p. https://doi.org/10.1016/j.tsep.2020.100499
Copyright (c) 2020 Nikolaenko Yu. E., Baranyuk О. V., Reva S. A.

This work is licensed under a Creative Commons Attribution 4.0 International License.