Spectral photosensitivity of diffused Ge-p–i–n photodiods

Keywords: Ge, p–i–n photodiode, spectral photosensitivity, pulsed laser rangefinder, theoretical modeling

Abstract

Laser rangefinders are widely used to measure distances for various civil and military purposes, as well as in rocket and space technology. The optical channel of such rangefinders uses high-speed p–i–n, or avalanche, photodiodes based on Si, Ge or InGaAs depending on the operating wavelength of the rangefinder in question.
The paper describes a manufacturing process for high-speed Ge-p–i–n photodiodes for laser rangefinders using the diffusion method. The passivation layer is made of ZnSe, which is a new solution for this type of photodiodes. The existing theoretical models are used to study the spectral ampere-watt sensitivity of the diodes at various values of the active region parameters, and the simulation results reliability is evaluated by the respective measurements. It is shown that the obtained theoretical dependence well agrees with the measurement data.
Moreover, the authors for the first time study the spectral photosensitivity of the Ge-p–i–n photodiode with a coated silicon filter covering the range λ = 1.4—1.6 μm. The spectral sensitivity range for the diodes is determined to be λ = 1.1—1.7 μm. The maximum photosensitivity of 0.42 A/W is achieved at a wavelength of λ = 1.54 μm. The authors argue that Ge-p–i–n photodiodes with a silicon filter are resistant to the "blinding" laser radiation with λ = 1.064 μm. The calculated data on the spectral photosensitivity of the photodiode with a filter also well agree with the experiment.
Thus, the chosen simulation technique allows taking into account most design and technological characteristics of the photodiodes during theoretical simulation, which makes it possible to accurately predict and optimize their parameters 

References

Molebny V., McManamon P., Steinvall O. et al. Laser radar: historical prospective - from the East to the West. Optical Engineering, 2016, no. 56(3), pp. 031220, https://doi.org/10.1117/1.OE.56.3.031220

Bokshanskiy V.B., Bondarenko D.A., Vyazovykh M.V. et al. Lazernyye pribory i metody izmereniya dal'nosti [Laser devices and methods for measuring range]. Moscow, Publishing house of Bauman Moscow Sate Technical University, 2012. (Rus)

Firago A.V., Petrovich I.P., Buyko A.S., Shumak D.V. Uvelicheniye dal'nosti deystviya lazernykh dal'nomerov s bezopasnym dlya glaz izlucheniyem [Long range laser rangefinders with eye-safe radiation]. Minsk, Publishing house of BSU, 2010. (Rus)

Belov I.Yu. Fizicheskiye osnovy opticheskoy dal'nometrii [Physical fundamentals of optical ranging]. Kazan, KSU, 2009. (Rus)

Fedorenko A.V., Kachur N.V., Maslov V.P., Arustamyan A.E. [Trends in the development of laser rangefinder devices] Proceedings of the V All-Ukrainian scientific-practical. conf. "Research: prospects for innovation in society and technology development". Ukraine, Kharkiv, 2017, pp. 86-90. (Ukr)

Fedorenko A.V., Mel'nyk V.K. [Ways to increase the sensitivity of the photodetector channel of a pulsed laser rangefinder]. Materials of the first international scientific-practical conference "Elements, devices and systems of electronic equipment" (EPSET-18). Ukraine, Zaporizhzhia, 2018, pp. 68-69. (Ukr)

Bol'shakov T.D., Samokhvalov A.K., Uvarova S.D. et al. [Method of manufacture and parameters of Ge p-i-n-photodiodes]. Prikladnaya Fizika (Applied Physics), 2012, no. 4, pp. 115-119. (Rus)

Ryuhtin V. V., Dobrovolsky Yu. G. Features of development thermostabilized germanium of photo diodes. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2004, no. 6, pp. 45-48. (Rus)

Kapasso F., Pirsoll T., Pollak M. i dr. Tekhnika opticheskoy svyazi. Fotopriyemniki [Optical communication technology. Photodetectors]. Mosrow, Mir, 1988. (Rus)

Glushchenko A.R., Gordiyenko V.I., Burkovskiy A.A. et al. Lazernyye sistemy tankovykh pritselov [Laser systems of tank sights]. Cherkasy, MacLaut, 2009, 600 p. (Rus)

Yanushenkov Yu.G., Lukantsev V.N., Kolosov M.P. Metody bor'by s pomekhami v optiko-elektronnykh priborakh [Methods of dealing with interference in optoelectronic devices]. Moscow, Radio i Svyaz', 1981, 179 p. (Rus)

Rogal'skiy A. Infrakrasnyye detektory [Infrared detectors]. Novosibirsk, Nauka, 2003, 636 p. (Rus)

Khinrikus Kh.V. Shumy v lazernykh informatsionnykh sistemakh [Noises in laser information systems]. Moscow, Radio i Svyaz', 1987, 108 p. (Rus)

Zverev G.M., Zemlyanov M.M., Koronnov A.A. [The action of a powerful laser pulse on a germanium avalanche photodiode]. Prikladnaya Fizika (Applied Physics), 2015, no. 2, pp. 79-83. (Rus)

Koronnov A.A., Zverev G.M., Zemlyanov M.M. et al. [Study of the characteristics of a germanium avalanche photodiode subjected to powerful laser radiation]. Prikladnaya Fizika (Applied Physics), 2015, no. 4, pp. 54-58 (Rus)

Koronnov A.A., Safutin A.Ye., Zemlyanov M.M., Zverev G.M. [Improving the resistance of photodetectors based on a germanium avalanche photodiode to the effects of powerful laser radiation]. Prikladnaya Fizika (Applied Physics), 2015, no. 6, pp. 65-69 (Rus)

Anisimova I.D., Vikulin I.M., Zaitov F.A. et al. Poluprovodnikovyye fotopriyemniki: ul'trafioletovyy, vidimyy i blizhniy infrakrasnyy diapazon spektra [Semiconductor photodetectors: ultraviolet, visible and near infrared]. Moscow, Radio i Svyaz', 1984, 216 p. (Rus)

Rzhanov A.V. (ed) Svoystva struktur metall – dielektrik – poluprovodnik [Properties of metal – dielectric – semiconductor structures]. Moscow, Nauka, 1976, 280 p. (Rus)

Sze S. M. Physics of Semiconductor Devices. Vol. 1. Wiley, New York, 1981, p. 444.

Sharma B.L., Purokhit R.K. Poluprovodnikovyye geteroperekhody [Semiconductor heterojunctions]. Moscow, Sov. Radio, 1979. (Rus)

Maslov V.P., Sukach A.V., Tet'orkin V.V. et al. [Features of manufacturing, electrical and photoelectric properties of diffusion Ge p–i–n-photodiodes]. Optoelectronics and semiconductor technics, 2018, iss. 53, pp. 188-198. (Ukr)

Tet'orkin V.V. et al. Hermaniyevyy fotoperetvoryuvach ta sposib yoho vyhotovlennya [Germanium photoconverter and method of its production]. Patent UA no. 120653, 2020. (Ukr)

Luft B.D., Perevoshchikov V.A., Vozmilova L.N. et al. Fiziko-khimicheskiye metody obrabotki poverkhnosti poluprovodnikov [Physicochemical methods for surface treatment of semiconductors]. Moscow, Radio i Svyaz', 1982. (Rus)

Perevoshchikov V.A., Skupov V.D. Osobennosti abrazivnoy i khimicheskiy obrabotki poverkhnosti poluprovodnikov [Features abrasive and chemical surface treatment of semiconductors]. Nizhny Novgorod, UNN, 1992. (Rus)

Baranskiy P.I., Klochkov V.P., Potykachev I.V. Poluprovodnikovaya elektronika. Svoystva materialov. Spravochnik [Semiconductor electronics. Material properties. Reference book]. Kyiv, Nauk. Dumka, 1975. (Rus)

Maslov V.P. et al. Dystantsiynyy datchyk temperatury [Remote temperature sensor]. Pat. UA no. 125612, 2018. (Ukr)

Amotchkina Т., Trubetskov M., Hahner D., Pervak V. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt., 2020, vol. 59, iss. 5, pp. A40–A47, https://doi.org/10.1364/AO.59.000A40

Palik E. D. Handbook of Optical Constants of Solids. NY, Academic Press, 1985, 468 p.

Published
2020-08-27