Главная
Технологія та конструювання в електронній апаратурі, 2023, № 3-4, с. 52-58.
DOI: 10.15222/TKEA2023.3-4.52
УДК 621.315.592.3
Вплив вмісту домішок та структурних дефектів на властивості детектора на основі Cd0.9Mn0.1Te:V
(англійською мовою)
Кондрик О. І., Солопіхін Д. О.

Україна, ННЦ «Харківський фізико-технічний інститут».

Досліджено перспективний матеріал Cd0.9Mn0.1Te:V, призначений для працюючих за кімнатної температури детекторів рентгенівського та гамма-випромінювання. Отримано результати кількісних досліджень впливу вмісту домішок та структурних дефектів на електрофізичні та детекторні властивості Cd0.9Mn0.1Te:V. Проведено аналіз обчислених величин питомого опору ρ та концентрацій вільних носіїв заряду, часу життя нерівноважних носіїв заряду τ, ефективності збирання зарядів η за різного складу домішок та дефектів у цьому матеріалі за температури 20°C. Встановлено оптимальні діапазони зміни енергії ED та концентрації глибокого донора ND, які забезпечують високоомний стан й прийнятні величини τ та η. Досліджено компенсацію вакансій кадмію домішкою ванадію. Зроблено припущення щодо причини відносно малої величини η та низької роздільності основних фотопіків в амплітудних спектрах детекторів на основі CdMnTe. Сформульовано напрямок подальших досліджень з метою з'ясування конкретних чинників деградації детекторних властивостей матеріалу під впливом внесених та фонових домішок.

Ключові слова: CdMnTe, властивості детектора, моделювання, дефекти структури, глибокі рівні.

Дата подання рукопису 10.09 2023
Використані джерела
  1. Egarievwe S.U., Lukosi E.D., James R.B. et al. Advances in CdMnTe nuclear radiation detectors development. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 2018, pp. 1 - 3. https://doi.org/10.1109/NSSMIC.2018.8824694
  2. Pengfei Yu,Yongren Chen,Wei Li et al. Study of detector-grade CdMnTe:In crystals obtained by a multi-step post-growth annealing method. Crystals, 2018, vol. 8, iss. 10, p. 387. https://doi.org/10.3390/cryst8100387
  3. Lijun Luan, Li Gao, Haohao Lv et al. Analyses of crystal growth, optical, electrical, thermal and mechanical properties of an excellent detector-grade Cd0.9Mn0.1Te:V crystal. Scientific Reports, 2020, vol. 10, iss. 1, pp. 2749-1 - 2749-10. https://doi.org/10.1038/s41598-020-59612-0
  4. Mycielski A., Wardak A., Kochanowska D. et al. CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties. Progress in Crystal Growth and Characterization of Materials, November 2021, vol. 67, iss. 4, p. 100543 https://doi.org/10.1016/j.pcrysgrow.2021.100543
  5. Egarievwe S.U., Chan W., Kim K.H. et al. Carbon coating and defects in CdZnTe and CdMnTe nuclear detectors. IEEE Transaction on Nuclear Science, 2016, vol. 63, iss. 1, pp. 236 - 245. https://doi.org/10.1109/TNS.2016.2515108
  6. Rejhon M., Dedic V., Beran L. et al. Investigation of deep levels in CdZnTeSe crystal and their effect on the internal electric field of CdZnTeSe gamma-ray detector. IEEE Transaction on Nuclear Science, 2019, vol. 66, iss. 8, pp. 1952 - 1958. https://doi.org/10.1109/TNS.2019.2925311
  7. McCoy J.J., Kakkireni S., Gelinas G. et al. Effects of excess Te on flux inclusion formation in the growth of cadmium zinc telluride when forced melt convection is applied. Journal of Crystal Growth, 2020, vol. 535, p. 125542. https://doi.org/10.1016/j.jcrysgro.2020.125542
  8. Roy U.N., Camarda G.S., Cui Y. et al. Growth of CdMnTe free of large Te inclusions using the vertical Bridgman technique. Journal of Crystal Growth, March 2019, vol. 509, pp. 35 - 39. https://doi.org/10.1016/j.jcrysgro.2018.12.026
  9. Vigneshwara P. Raja. Deep-level defects in CdZnTe and CdMnTe detectors identified by photoinduced current transient spectroscopy (PICTS) and thermally simulated current (TSC) techniques. Technical Report, October 2020, Indian Institute of Technology Dharwad. https://doi.org/10.13140/RG.2.2.28738.45766
  10. Kondrik O.I., Solopikhin D.O. Changes in the electrophysical and detector properties of the promising detector material Cd1-xMnxTe depending on the concentration of impurities, defects and manganese content. Problems of Atomic Science and Technology, series Vacuum, Pure Materials, Superconductors, Accepted for publication in no. 1, 2024.
  11. Kim K. H., Bolotnikov A. E., Camarda G. S. et al. New approaches for making large-volume and uniform CdZnTe and CdMnTe detectors. IEEE Transaction on Nuclear Science, 2012, vol. 59, iss. 4, pр. 1510 - 1515. https://doi.org/10.1109/TNS.2012.2202917
  12. Kim K., Cho S., Suh J. et al. Gamma-ray response of semi-insulating CdMnTe crystals. IEEE Transaction on Nuclear Science, 2009, vol. 56, iss. 3, pp. 858 - 862. http://dx.doi.org/10.1109/TNS.2009.2015662
  13. Nykoniuk Ye., Solodin S., Zakharuk Z. et al. Compensated donors in semi-insulating Cd1-xMnxTe:In crystals. Journal of Crystal Growth, October 2018, vol. 500, pp. 117 - 121. https://doi.org/10.1016/j.jcrysgro.2018.08.013
  14. Lijun Luan, Yi He, Dan Zheng et al. Defects, electronic properties, and α particle energy spectrum response of the Cd0.9Mn0.1Te:V single crystal. Journal of Materials Science: Materials in Electronics, 2020, vol. 31, pp. 1179 - 4487. https://doi.org/10.1007/s10854-020-02996-6
  15. Novikov G.F., Radychev N.A. Experimental determination of the dependence of the free electron-hole recombination rate constant on the band gap in semiconductors of the AIIBVI and AIBVII types. Russian Chemical Bulletin, 2007, vol. 56, рp. 890 - 894. https://doi.org/10.1007/s11172-007-0134-9
  16. Shockley W., Read W.T. Statistics of the recombinations of holes and electrons. Physical Reviev, 1952, vol. 87, iss. 5, pp. 835 - 842. https://doi.org/10.1103/PhysRev.87.835
  17. Kondrik A. I., Kovtun G. P. Influence of impurities and structural defects on electrophysical and detector properties of CdTe and CdZnT. Technology and design in electronic equipment, 2019, no. 5 - 6, pp. 43 - 50. https://dx.doi.org/10.15222/TKEA2019.5-6.43 (Rus)
  18. Knoll G. F. Radiation detection and measurement. John Wiley & Sons, Inc., 2010, 864 p.
  19. Petrus R.Yu., Ilchuk H.A., Sklyarchuk V.M.et al. Transformation of band energy structure of solid solutions CdMnTe. Journal of Nano- and Electronic Physics, 2018, vol. 10, iss. 6, p. 06042. https://doi.org/10.21272/jnep.10(6).06042
  20. Kondrik A. I., Kovtun G. P. Influence of impurities and structural defects on the properties of CdTe- and CdZnTe-based detectors. Technology and design in electronic equipment, 2022, iss. 1 - 3, pp. 31 - 38. http://dx.doi.org/10.15222/TKEA2022.1-3.31 (Ukr)
  21. Hofmann D. M., Stadler W., Christmann P., Meyer B. K. Defects in CdTe and Cd1-xZnxTe. Nuclear Instruments and Methods in Physics Research Section A, 1996, vol. 380, iss. 1 - 2, pp. 117 - 120. https://dx.doi.org/10.1016/S0168-9002(96)00287-2
  22. Roy U.N., Okobiah O.K., Camarda G.S., et al. Growth and characterization of detector-grade CdMnTe by the vertical Bridgman technique. AIP Advances, 2018, vol. 8, p. 105012. https://doi.org/10.1063/1.5040362
  23. Byun J., Seo J., Seo J., Park B. Growth and characterization of detector-grade CdMnTeSe. Nuclear Engineering and Technology, November 2022, vol. 54, iss. 11, pp. 4215 - 4219 https://doi.org/10.1016/j.net.2022.06.007