Frequency multipliers on semiconductor diode structures

  • M. F. Karushkin Research Institute «Orion», Kyiv, Ukraine
Keywords: millimeter wave band, varactor, Gunn diode, ISIS diode, IMPATT diode, Schottky barrier diode, InP diode, frequency multiplication, heterostructures and quantum superlattices, THz radiation

Abstract

Obvious advantages of the millimeter wave technology including a large information capacity, high directivity of radiation, diagnostics and spectroscopy capabilities of different environments, including the methods of electron paramagnetic resonance and high resolution nuclear magnetic resonance have led to the rapid development of techniques for that range throughout the world. These advantages determine the attractiveness of the practical application of millimeter wavelengths to create high-speed communication links, high-precision radar, chemicals identification device and other equipment.
Important role in the development of millimeter and sub-millimeter wave ranges belongs to the frequency multipliers development. This paper analyzes the main trends of modern development of efficient frequency multipliers on semiconductor diode structures, which are based on different physical principles, namely diode harmonic generators; frequency multipliers based on nonlinear dependencies of their reactive parameters on the voltage; frequency multipliers of high multiplicity on IMPATT diodes operating in mode of pulse exciting oscillations at high frequencies; multipliers on complex heterostructures and quantum super lattices in the terahertz range.
The paper presents design solutions for frequency multipliers with various configurations and ways of optimizing the diode structures and operation modes that ensure their effective functioning in the frequency multiplication mode. The connection of electric parameters of frequency multipliers with output characteristics of microwave devices is determined.
The given review of the results on designing power sources based on multiplying diodes indicates significant advances in this field and rapid development of the electronic component base in the short-wave part of the microwave spectrum.
Further development of the technique of multiplying diodes will move forward not only in the direction of increasing the working capacity, but also in solving the problem of microminiaturization. In this regard, the emergence of heteroepitaxial multilayer varactor structures should be noted. Such structures are made with molecular beam epitaxy and have all the advantages of a composite varactor, but at the same time have better thermal characteristics and good prospects for their applications in the terahertz range.

References

Siegel P. H. Terahertz technology. IEEE Trans. On Microwave Theory and Tech., 2002, vol. 50, no. 3, pp. 910-928. http://dx.doi.org/10.1109/22.989974

Carpintero G., Garcia-Munoz E., Hartnagel H., Preu S., Räisänen A. Semiconductor TeraHertz Technology: Devices and Systems at Room Temperature Operation. John Wiley & Sons, 2015, 408 ð. https://doi.org/10.1002/9781118920411.ch1

Porterfield D. High-efficiency terahertz frequency triplers. IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 2007, pp. 337-340. https://doi.org/10.1109/MWSYM.2007.380439

Chattopadhyay G., Schlecht E., Ward J., Gill J., Javadi H., Maiwald F. and Mehdi I. An all solid-state broadband frequency multiplier chain at 1500 GHz. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 5, pp. 1538-1547. https://doi.org/10.1109/TMTT.2004.827042

Maiwald F., Schlecht E., Maestrini A., Chattopadhyay G., Pearson J.C., Pukala D., Mehdi I. THz frequency multiplier chains based on planar Schottky diodes. Proc. SPIE: Astronom. Telescopes Instrum. Int. Conf., Waikoloa, HI, 2002, vol. 4855, pp. 447-458.

Wang H., Sengupta K. RF and mm-Wave Power Generation in Silicon. Academic Press, 2015, 576 ð.

Usanov D.A., Skrypal A.V., Posadovskiy V.N., Tyaglov V.S., Grigoriev D.V. [Microwave multipliers with high multiplicity]. Izvestiya VUZov. Radiophysics. 2014, no 2, pp. 48-50. (Rus)

Pildon P.I., Vizel A.A. [Semiconductor diodes for frequency multiplication. Semiconductor devices and its application]. Collection of articles by ed. Ya.A. Fedotova. Moscow, Sov. Radio, 1970, iss. 23, pp. 82-100. (Rus)

Irvin I.C., Swan C.B. A composite varactor for simultaneous high harmonic generation. IEEE Transactions on Electron Devices, 1966, vol. 13, no 5, pp. 466-471. https://doi.org/10.1109/T-ED.1966.15713

Staecker P.W., Hines M.E., Occhiuti R.F., Cushman I.R. Multi-watt power generation at millimeter-wave frequencies using epitaxially-stacked varactor diodes. IEEE MTT-S, International Microwave Symposium Digest, Las Vegas, USA, 1987, vol. 2, pp. 917-920.

Staecker P.W. MM-wave transmitters using power frequency multipliers. Microwave Journal, 1988, no. 2, pp. 175-181.

Cushman R., Occhliuti F., McDonagh E.M., Hines M.E., Staecker P.W. High power epitaxially-stacked varactor diode multipliers. IEEE MTT-S International Microwave Symposium Digest. Dallas, TEX, 1990, vol. 2, pp. 923-926. https://doi.org/10.1109/MWSYM.1990.99729

Courtney W.E., Chen C.L. et al. Monolithic analog phase shifters and frequency multipliers for mm-wave phased array applications. Microwave Journal, 1966, no. 12, pp. 105-119.

Kasatkin L.V. et al. Power microwave frequency multipliers. Patent 20485 of Ukraine, 1997. (Rus)

Rolland P.A., Waterkowski J.L., Constant E., Salmer G. New model of operation for avalanche diodes: frequency multiplication and conversion. IEEE Transactions on Microwave Theory and Techniques, 1976, no 11, pp. 768-775.

Sobolev L. I., Kotov U. A., Modestov L. A. [Frequency multipliers with high multiplicity] Poluprovodnikovye pribory i ikh primenenie, Moscow, 1970, iss. 23, pp. 109-132. (Rus)

Venger A.Z., Ermak A. N., Yakimenko A.M. Pribory i tekhnika eksperimenta [Frequency multiplier based on IMPATT]. 1980, no. 3, pp. 138-139. (Rus)

Kasatkin L.V., Novozhilov V.V. Effective high order frequency multipliers on IMPATT diodes. Applied Microwave Wireless, 1994, no. 6, pp. 32-36.

Dvornichenko V.P., Karushkin M.F., Maltsev S.B., Chajka V.E. [Operation of IMPATT in the radio pulse frequency multiplication mode] Elektronnaya tekhnika. Seriya 1. Elektronika SVCh, 1985, iss. 4 (376), pp. 40-44. (Rus)

Grigulovich V.I., Immoreev I.Ya. [Radio pulse conversation of frequency]. Moscow, Soviet Radio, 1966, 335 p. (Rus)

Karushkin M.F., Obuhov I.A., Balabanov V.M., Smirnova E.A. [Solid-state modules for microwave radiation generating in the frequency range up to 200 GHz]. Proc. of the 26th Int. Conference “Microwave & Telecommunication Technology” (CriMiCo’2016), 2016, Sevastopol, Crimea, pp. 289-295. (Rus) 22. Karushkin M.F., Maltsev S.B., Hitrovskiy V.A. [Solidstate microwave modules for radio equipment and systems of millimeter wavelength range]. Tekhnologiya i konstruirovanie v elektronnoi aparature, 2016, no 1, pp. 3-7. (Rus) https://doi.org/10.15222/TKEA2016.1.03

Chajka V.E., Kasatkin L.V. [Semiconductor devices in the millimeter wave range]. Sevastopol, Veber, 2006, 319 p. (Rus)

Vaks V.L., Anfertiev V.A., Goldman G.N., Pentin I.V., Tretyakov I.V. [THz-spectroscopy with high resolution on the basis of nanostructured semiconductor and supersemiconductor devices]. Zhurnal radioelektroniki, 2006, no. 1. (Rus)

Shashkin V.I. [Report on research work. Formation and investigation of multilayer nanostructures based on Si, GaAs and GN for passive and active elements of millimeter and infrared wavelength ranges]. Institute of Microstructure Physics, RAS, Nizhny Novgorod, 2012. (Rus)

Bozhkov V.G. [Semiconductor detectors, mixers and frequency multipliers of the terahertz range]. Izvestiya VUZov. Radiophysics, 2003, vol. 46, no. 8-9, pp. 702-731. (Rus)

Erickson N.R. High efficiency submillimeter frequency multipliers. IEEE MTT-S, International Microwave Symposium Digest, 1990, pp. 1301-1304. https://doi.org/10.1007/BF02995124

Malko A., Bryllert T., Vukusic J., Stake J. High Efficiency and Broad-Band Operation of Monolithically Integrated W-Band HBV Frequency Tripler. 24th Int. Conf. on Indium Phosphide and Related Material, Santa Barbara, USA, 2012, pp. 92-94.

Malko A., Bryllert T., Vukusic J., Stake J. A 474 GHz HBV frequency quintuplier integrated on a 20 μm thick silicon substrate. IEEE Transactions on Terahertz Science and Technology, 2015, no. 5, ðp. 85. https://doi.org/10.1109/ TTHZ.2014.2378793

Belyakov V.A., Obolenskiy S.V., Fefelova E.L., Ladenkov I.V. et al. [Heterobarrier Varactors Based on Hetero structures on Indium Phosphide Substrates]. Trudy 2-i Rossiisko-belorusskoi nauchno-tekhnicheskoi konferentsii «Elementnaya baza otechestvennoi radioelektroniki», Nizhnii Novgorod, 2015, pp. 199-201. (Rus)

Maleev N.A., Belyakov V.A., Vasiliev A.P., Kulagina M.M. [Molecular beam epitaxy of structures of hetero barrier varactors in a material system InGaAs—InAlAs—InР]. Elektronika i mikroelektronika SVCh, 2016, vol. 1, pp. 68-72. (Rus)

Maleev N.A., Belyakov V.A., Vasiliev A.P., Bobrov M.A. et al. Molecular-beam epitaxy of InGaAs/InAlAs/AlAs structures for heterobarrier varactors. Semiconductors, 2017, vol. 51, iss. 11, pp. 1431-1434. https://doi.org/10.1134/ S1063782617110185

Romanov Y.A., Romanova Y.Y. Bloch oscillations in superlattices: The problem of a terahertz oscillator. Semiconductors, 2005, vol. 39, iss. 1, pp. 147-155. https://doi.org/10.1134/1.1852666

Paveliev D.G., Vasiliev A.P., Kozlov V.A. et al. [Diode hetero structures for terahertz frequency devices]. Zhurnal radioelektroniki: elektronnyi zhurnal, 2016, no 1. (Rus)

Paveliev D.G., Koshurinov Y.I., Ivanov A.S., Panin A.N., Vax V.L. et al. Experimental study of frequency multipliers based on a GaAs/AlAs semiconductor superlattices in the terahertz frequency range. Semiconductors, 2012, vol. 46, i s s . 1 , p p . 1 2 1 - 1 2 5 . h t t p s : / / d o i . o r g / 1 0 . 1 1 3 4 /S1063782612010150

Schomburg E., Hofbeck K., Scheuerer R. et al. Control of the dipole domain propagation in GaAs/AlAs super lattice with a high-frequency field. Phys. Rev. B, 2002, vol. 65(15), 155320. https://doi.org/10.1103/PhysRevB.65.155320

Rakitin S.P., Karushkin N.F., Kasatkin L.V., Tsvirko U.A. et al. Solid state components for perspective electronic equipments of MM and sub MM wavelength range (26,5—300 GHz). Proc. of the 10th International conference “Microwave Telecommunication Technology”, Ukraine, Sevastopol, 2000, pp. 33-36. (Rus)

Eisele H., Rydberg A., Haddad G. Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100-300 GHz frequency range and above. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 40, no. 4, pp 626-631. https://doi.org/10.1109/22.841952

Jones S., Lybura M., Carlstorom J., O’Brien T. A 63—170 GHz second harmonic operation of an InP transferred electron device. IEEE Transactions on Electron Devices, 1999, vol. 46, no. 1, pp. 17-23. https://doi.org/10.1109/16.737436

Kosov A.S., Elensky V. [MM wave harmonic oscillators based on Gunn diodes] Zarubezhnaya radioelektronika, 1987, no. 2, pp. 54-65. (Rus)

Zubovich N.A., Tsvirko U.A. [Modeling of the biharmonical generation mode in a double-circuit Gunn oscillator]. Elektronnaya tekhnika. Seriya 1. Elektronika SVCh, 1991, iss. 6, pp. 26-29. (Rus)

Published
2018-06-26