Стан та перспективи розвитку сенсорів Холла для електронних приладів

  • Віктор Сергійчук КПІ ім. Ігоря Сікорського
  • Остап Олійник КПІ ім. Ігоря Сікорського https://orcid.org/0000-0003-3557-2431
  • Артур Бойкиня Igor Sikorsky Kyiv Polytechnic Institute
Ключові слова: сенсори Холла, ефект Холла, напівпровідникові матеріали для сенсорів Холла

Анотація

Стрімкий розвиток твердотільної електроніки вимагає швидкого розвитку сенсорної електроніки, зокрема сенсорів Холла, для різних практичних застосувань. У статті наведено огляд класичних і сучасних підходів до проєктування сенсорів Холла різного масштабу — від макроскопічних систем до квантових нанопристроїв, їх практичне застосування, переваги та недоліки. Представлено також огляд математичних моделей ефектів Холла в напівпровідникових матеріалах, на основі аналізу яких надано рекомендації щодо вибору матеріалу для сенсора Холла із заданими параметрами чутливості до магнітного поля, а також визначено перспективні напрямки подальших досліджень і технологічних розробок на основі ефекту Холла.

Посилання

Hall E. On a new action of the magnet on electric currents. American Journal of Science, 1880, vol. s3-19, iss. 111, pp. 200–205. https://doi.org/10.2475/ajs.s3-19.111.200

Popovic R.S. Hall effect devices. Bristol, Philadelphia: Institute of Physics, 2004. 419 p.

Nagaosa N., Sinova J., Onoda S. et al. Anomalous Hall effect, Rev. Mod. Phys, 2010, pp. 1539–1592. https://doi.org/10.1103/RevModPhys.82.1539

Hall E. On the “Rotational Coefficient” in nickel and cobalt. Proceedings of the Physical Society of London, vol. 4, no. 1, pp. 325–341. https://doi.org/10.1088/1478-7814/4/1/335

Zheng S.-H., Duan H.-J., Wang J.-K. et al. Origin of planar Hall effect on the surface of topological insulators: Tilt of Dirac cone by an in-plane magnetic field. Physical Review B, 2020, vol. 101, iss. 4, 041408(R). https://doi.org/10.1103/physrevb.101.041408

Rao W., Zhou Y.-L., Wu Y. et al. Theory for linear and nonlinear planar Hall effect in topological insulator thin films. Physical Review B, 2021, vol. 103, iss. 15. https://doi.org/10.1103/physrevb.103.1554

Marsocci V. A., Chen T. T. Measurements of the planar Hall effect in polycrystalline and in single‐crystal nickel thin films. Journal of Applied Physics, 1969, vol. 40, iss. 8, pp. 3361–3363. https://doi.org/10.1063/1.1658188

Hui Wang Y.-X. H. Orbital origin of the intrinsic planar Hall effect. Phys. Rev. Lett., 2024, no. 132, 056301. https://doi.org/10.1103/PhysRevLett.132.056301

Althammer M. Spin Hall Effect. Topology in Magnetism, 2018, no. 192, pp. 209–237.

Schliemann J. Spin Hall Effect. International Journal of Modern Physics B, 2006, vol. 20, no. 09, pp. 1015–1036. https://doi.org/10.1142/s021797920603370x

Klitzing K., Dorda G., Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, vol. 45, no. 6, pp. 494–497. https://doi.org/10.1103/physrevlett.45.494

Klitzing K. 25 years of quantum Hall effect (QHE) a personal view on the discovery, physics. The Quantum Hall Effect: Poincaré Seminar, 2005, pp. 1–21. https://doi.org/10.1007/3-7643-7393-8_1

Papic Z., Balram A. C. Fractional quantum Hall effect in semiconductor systems. Encyclopedia of Condensed Matter Physics (Second Edition), 2024, vol. 1, pp. 285–307. https://doi.org/10.1016/B978-0-323-90800-9.00007-X

Tsui D. C., Stormer H. L., Gossard A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters, 1982, vol. 48, no. 22, pp.1559–1562. https://doi.org/10.1103/physrevlett.48.1559

Saitoh E., Ueda M., Miyajima H., Tatara G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 2006, vol. 88, iss. 18, 182509. https://doi.org/10.1063/1.2199473

Sahoo B., Roy K., Gupta P., Mishra A., Satpati B., Singh B. B., Bedanta S. Spin pumping and inverse spin Hall effect in iridium oxide. Advanced Quantum Technologies, 2021, vol. 4, iss. 9, 2000146. https://doi.org/10.1002/qute.202000146

Zayets V., Mishchenko A. Inverse Spin Hall effect in ferromagnetic nanomagnet. Dependencies on magnetic field, current and current polarity, 2020. arXiv:2010.02409. https://doi.org/10.48550/arXiv.2010.02409

Zhao P., Ding X., Li C., Tang S. Achieving photonic spin Hall effect, spin-selective absorption, and beam deflection with a vanadium dioxide metasurface. Materials, 2023, v. 16, № 12, p. 4259. https://doi.org/10.3390/ma16124259

Zhaozhao Z., Ruixi L., Zhang Y. et al. Crossover from positive to negative spin Hall signal in a ferromagnetic metal induced by the magnetization modulated interface effect. Advanced Physics Research, 2023, vol. 2, iss. 9, 2300017. https://doi.org/10.1002/apxr.202300017

Maciejko J., Hughes T. L., Zhang S.-C. The quantum spin Hall effect. Annual Review of Condensed Matter Physics, 2011, vol. 2, pp. 31–53. https://doi.org/10.1146/annurev-conmatphys-062910-140538

Kane C. L., Mele E. J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, vol. 95, no. 22. https://doi.org/10.1103/PhysRevLett.95.226801

Chen T., Byrnes, T. Skyrmion quantum spin Hall effect. Physical Review B, 2019 vol. 99, no. 18. https://doi.org/10.1103/physrevb.99.184427

Bernevig A., Taylor L., Shou-Cheng Zhang. Quantum Spin Hall Effect and Topological Phase Transition in Hgte Quantum Wells. Science, 2006, vol. 314, iss. 5806, pp. 1757–1761. https://doi.org/10.1126/science.1133734

Xue Q.-K., He K., Wang Y. Quantum anomalous Hall effect in magnetic topological insulators. 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), 2016. https://doi.org/10.1109/memsys.2016.7421541

Rycerz A., Tworzydło J., Beenakker C. W. J. Valley filter and valley valve in graphene. Nature Physics, 2007, vol. 3, pp.172–175. https://doi.org/10.1038/nphys547

Sergiichuk V., Oliinyk O. Modelling of the planar Hall Sensor with Photosensitive Active area. 46th International Spring Seminar on Electronics Technology (ISSE), 2023, Timisoara, Romania. https://doi.org/10.1109/ISSE57496.2023.10168346

Gunawan O., Pae S. R., Bishop D. M. et al. Carrier-resolved photo-Hall effect. Nature, 2019, vol. 575, pp. 151–155. https://doi.org/10.1038/s41586-019-1632-2

Ohuchi Y., Kozuka Y., Rezaei N. et al. Photoinduced sign inversion of the anomalous Hall effect in EuO thin films. Physical Review B, 2014, vol. 89, iss. 12. https://doi.org/10.1103/physrevb.89.121114

Fowler A. B. Photo-hall effect in CdSe sintered photoconductors. Journal of Physics and Chemistry of Solids, 1961, vol. 22, pp. 181–188. https://doi.org/10.1016/0022-3697(61)90260-8

Leijtens T., Stranks S. D., Eperon G. E. et al. Electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility. ACS Nano, 2014, vol. 8, iss. 7, pp.7147–7155. https://doi.org/10.1021/nn502115k

Ponseca C. S., Savenije T. J., Abdellah M.et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, vol. 136, iss. 14, pp. 5189–5192. https://doi.org/10.1021/ja412583t

Hui Y. X., An N., Chen K. et al. Research on Hall effect of graphene by var der pauw method. Advanced Materials Research, 2015, vols. 1120–1121, pp. 383–387. https://doi.org/10.4028/www.scientific.net/amr.1120-1121.383

Hurd C. M. The Hall Effect in Metals and Alloys. Plenum Press, New York, 1972, 400 p. https://doi.org/10.1007/978-1-4757-0465-5

Nastase H. Classical vs. quantum Hall effect. In: String Theory Methods for Condensed Matter Physics. Cambridge University Press, 2017, pp. 104–116. https://doi.org/10.1017/9781316847978

Ezawa Z. Quantum Hall Effects: Recent Theoretical and Experimental Developments. Singapore, World Scientific Publishing Co. Pte. Ltd, 2013, 928 p. https://doi.org/10.1142/8210

Shrivastava K. Quantum Hall Effect: Expressions. New York, Nova Science Publishers Inc., 2005. 433 p.

Friess B. Spin and Charge Ordering in the Quantum Hall Regime. Springer, 2016, 129 p. https://doi.org/10.1007/978-3-319-33536-0

Popovic R. Hall Effect Devices. CRC Press, 2003. 420 p. https://doi.org/10.1201/NOE0750308557

Ramsden E. Hall-Effect Sensors: Theory and Applications. Elsevier, 2006. 250 p. https://doi.org/10.1016/B978-0-7506-7934-3.X5000-5

Honeywell Inc. Hall Effect Sensing and Application. Micro Switch Sensing and Control. https://sensing.honeywell.com (accessed 5.08.2024)

Popovic R. S. Hall-effect devices. Sensors and Actuators, 1989, vol. 17, iss. 1–2, pp. 39–53. https://doi.org/10.1016/0250-6874(89)80063-0

Karsenty А. A Comprehensive review of integrated Hall effects in macro-, micro-, nanoscales, and quantum devices. Sensors, 2020, vol. 20, iss. 15, 4163. https://doi.org/10.3390/s20154163

Reig C. Magnetic field sensors based on giant magnetoresistance (GMR) technology: applications in electrical current sensing. Sensors, 2009, vol. 9, iss. 10, pp. 7919–7942. https://doi.org/10.3390/s91007919

Fan H. Detection techniques of biological and chemical Hall sensors. RSC Advances, 2021, iss. 13, pp. 7257–7270. https://doi.org/10.1039/d0ra10027g

Mishra S. Hall Effect Sensors – Work, Types, Applications, Pros, & Cons. https://electricalfundablog.com/hall-effect-sensors (accessed 5.08.2024)

Kittel Ch. Introduction to Solid State Physics. USA, John Wiley & Sons, Inc, 2004, 153 p.

Oka T., Bucciantini L. Heterodyne Hall effect in a two-dimensional electron gas. Physical Review B, 2016, vol. 94, iss. 15, 155133. https://doi.org/10.1103/physrevb.94.155133

Kim S., Torati S. R., Talantsev A. et al. Performance validation of a planar Hall resistance biosensor through beta-amyloid biomarker. Sensors, 2020, vol. 20, iss. 2, 434. https://doi.org/10.3390/s20020434

Uddin S. M. Design and optimisation of elliptical-shaped planar Hall sensor for biomedical applications. Biosensors, 2022, vol. 12, iss. 2, 108. https://doi.org/10.3390/bios12020108

Nhalil H. Parallel array of planar Hall effect sensors for high resolution magnetometry. J. Appl. Phys., 2023, vol. 133, iss. 20, 204501. https://doi.org/10.1063/5.0151569

Kim M.-C. Robotic localization based on planar cable robot and Hall sensor array applied to magnetic capsule endoscope. Sensors, 2020, vol. 20, iss. 20, 5728. https://doi.org/10.3390/s20205728

Lyu F. A new design of a cmos vertical Hall sensor with a low offset. Sensors, 2022, vol. 22, iss. 15, 5734. https://doi.org/10.3390/s22155734

Paun M.-A., Sallese J.-M., Kayal M. Hall effect sensors design, integration and behavior analysis. Journal of Sensor and Actuator Networks, 2013, vol. 2, iss. 1, pp. 85–97. https://doi.org/10.3390/jsan2010085

Bryson S. Measuring 3D motion with absolute position sensors. Texas instruments. https://www.ti.com/lit/ab/sbaa512b/sbaa512b.pdf?ts=1737357854087 (accessed 5.08.2024)

Xu H., Zhang Z., Shi R. et al. Batch-fabricated high-performance graphene Hall elements. Scientific Reports, 2013, vol. 3, no. 1. https://doi.org/10.1038/srep01207

Jones D., Wang L., Ghanbari A. et al. Design and evaluation of magnetic Hall effect tactile sensors for use in sensorized splints. Sensors, 2020, vol. 20, iss. 4, 1123. https://doi.org/10.3390/s20041123

Sadeghi M., Sexton J., Chen-Wei Liang, Missous M. Highly sensitive nanotesla quantum-well Hall-effect integrated circuit using GaAs–InGaAs–AlGaAs 2DEG. IEEE Sensors Journal, 2015, vol. 15, iss. 3, pp. 1817–1824. https://doi.org/10.1109/jsen.2014.2368074

Karsenty A., Mottes R. Hall amplifier nanoscale device (HAND): modeling, simulations and feasibility analysis for THz sensor. Nanomaterials, 2019, vol. 9, iss. 11, 1618. https://doi.org/10.3390/nano9111618

Fan L., Bi J., Xi K., Majumdar S., Li B. Performance optimization of FD-SOI Hall sensors via 3D TCAD simulations. Sensors, 2020, vol. 20, iss. 10, 2751. https://doi.org/10.3390/s20102751

Lee C.-Y., Lin Y.-Y., Kuo C.-K., Fu L.-M. Design and application of MEMS-based Hall sensor array for magnetic field mapping. Micromachines, 2021, vol. 12, iss. 3, 299. https://doi.org/10.3390/mi12030299

Kunets V. P., Black W. T., Mazur Y. I. et al. Highly sensitive micro-Hall devices based on Al0.12In0.88Sb/InSb heterostructures. Journal of Applied Physics, 2005, vol. 98, iss. 1, 014506. https://doi.org/10.1063/1.1954867

InAs and GaAs Hall sensor specifications. Magnetic Measurement and Control Catalog. https://www.lakeshore.com/docs/default-source/product-downloads/catalog/magnetic-field-sensors_l.pdf (accessed 5.08.2024)

Dankert A., Karpiak B., Dash S. P. Hall sensors batch-fabricated on all-CVD h-BN/graphene/h-BN heterostructures. Scientific Reports, 2017, vol. 7, no. 1, 15231. https://doi.org/10.1038/s41598-017-12277-8

Alpert H. S., Chapin C. A., Dowling K. M. et al. Sensitivity of 2DEG-based Hall-effect sensors at high temperatures. Review of Scientific Instruments, 2020, vol. 91, iss. 2, 025003. https://doi.org/10.1063/1.5139911

Опубліковано
2024-12-27