Застосування шару на основі матеріалів з фазовим переходом «метал — напівпровідник» для електротеплового захисту сонячних елементів

  • Олександр Тонкошкур Дніпровський національний університет імені Олеся Гончара
  • Олександр Іванченко Дніпровський національний університет імені Олеся Гончара
Ключові слова: сонячний елемент, терморезистор, фазовий перехід, перенапруга, локальний перегрів

Анотація

СШляхом моделювання досліджено кінетичні залежності розподілів температури, струму і напруги фотоелектричного елемента з додатковим шаром на основі матеріалів з фазовим переходом «метал - напівпровідник», які знаходяться в тепловому контакті. Показано, що основою застосування таких терморезисторних шарів для реалізації захисту сонячних фотоелементів від електричного перегріву є істотне перевищення їхнього опору в «холодному» стані відносно опору освітленого прямозміщеного сонячного елемента, а також опір зазначених шарів, який у «нагрітому» стані має бути значно меншим за опір зворотнозміщеного фотоелемента та джерела живлення.

Посилання

Kontges M., Kurtz S., Packard C. et al. Review of Failures of Photovoltaic Modules. IEA PVPS Task 13, 2014, 132 p.

Humaid V., Kumar M., Gupta R. Bypass diode effect on temperature distribution in crystalline silicon photovoltaic module under partial shading. Solar Energy, 2020, vol. 208, pp. 182–194. https://doi.org/10.1016/j.solener.2020.07.087

Han H., Dong X., Li B. et al. Degradation analysis of crystalline silicon photovoltaic modules exposed over 30 years in hot-humid climate in China. Solar Energy, 2018, vol. 170, pp. 510–519. https://doi.org/10.1016/j.solener.2018.05.027

Oh W., Choi H., Seo K. W. et al. Evaluation based on performance and failure of PV system in 10 years field-aged 1 MW PV power plant. Microelectronics Reliability, 2020, vol. 114, p. 113763. https://doi.org/10.1016/j.microrel.2020.113763

Karimi M., Samet H., Ghanbari T., Moshksar E. A current based approach for hotspot detection in photovoltaic strings. International Transactions on Electrical Energy Systems, 2020, vol. 30, no. 9, p. e12517. https://doi.org/10.1002/2050-7038.12517

Kim K. A., Krein P. T. Reexamination of photovoltaic hot spotting to show inadequacy of the bypass diode. IEEE Journal of Photovoltaics, 2015, vol. 5, no. 5, pp. 1435–1441. https://doi.org/10.1109/JPHOTOV.2015.2444091

Daliento S., Di Napoli F., Guerriero P., d’Alessandro V. A modified bypass circuit for improved hot spot reliability of solar panels subject to partial shading. Solar Energy, 2016, vol. 134, pp. 211–218. https://doi.org/10.1016/j.solener.2016.05.001

Sanchez Pacheco F. J. Photovoltaic systems distributed monitoring for performance optimization. Doctoral thesis, Universidad de Málaga, Málaga, España, 2015.

Ivanchenko A. V., Tonkoshkur A. S., Mazurik S. V. Application of varistor-posistor structure for protection from overvoltages of photovoltaic cells of solar arrays. Journal of Physics and Electronics, 2019, vol. 27, no. 1, pp. 79–88. https://doi.org/10.15421/331913

Tonkoshkur A. S., Ivanchenko A. V. Modeling of electrical characteristics of photovoltaic solar arrays with protection against current overloads based on PolySwitch elements. Multidiscipline Modeling in Materials and Structures, 2020, vol. 16, no. 3, pp. 425–438. https://doi.org/10.1108/MMMS-01-2019-0022

Ivanchenko A. V., Tonkoshkur A. S. Application of a polymer nanocomposite with carbon filler to limit overvoltages in a photovoltaic element. Journal of Advanced Dielectrics, 2020, vol. 10, no. 5, p. 2050020. https://doi.org/10.1142/S2010135X20500204

Tonkoshkur A. [Prospects for the use of power limiters based on materials with a metal-semiconductor phase transition in photovoltaic systems of solar power plants]. Materials of the IX International Scientific and Practical Conference “Information and Analytical Support for Making Management Decisions on Energy and Socio-Economic Problems of Ukraine”, Ukraine, Dnipro, 2021, pp. 102–104. https://doi.org/10.46489/iazpur-08 (Ukr)

Nordquist C. D., Leonhardt D., Custer J. O. et al. Power handling of vanadium dioxide metal-insulator transition RF limiters. Proceedings of 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). USA, MI, Ann Arbor, 2018, pp. 1–3. https://doi.org/10.1109/IMWS-AMP.2018.8457150

Andreev V.N., Klimov V.A. Metal–insulator phase transition in iron-doped vanadium dioxide thin films. Physics of the Solid State, 2018. vol. 60, no. 12, pp. 2604–2607. https://doi.org/10.1134/S1063783418120028

Zhong X., LeClair P., Sarker S. K., Gupta A. Metal-insulator transition in epitaxial VO2 thin films on TiO2 (100). Physical Review B, 2012, vol. 86, no. 9, p. 094114. https://doi.org/10.1103/PhysRevB.86.094114

Pergament A. L., Stefanovich G. B., Velichko, A. A. Oxide electronics and vanadium dioxide perspective: A review. Journal on Selected Topics in Nano Electronics and Computing, 2013, vol. 1, no. 1, pp. 24–43. http://dx.doi.org/10.15393/j8.art.2013.3002

Pan K., Wang W., Shin E. et al. Vanadium oxide thin-film variable resistor-based RF switches. IEEE Transactions on Electron Devices, 2015, vol. 62, no. 9, pp. 2959–2965. https://doi.org/10.1109/TED.2015.2451993

Soltani M., Kaye A. B. Properties and applications of thermochromic vanadium dioxide smart coatings. In book: Intelligent Coatings for Corrosion Control. Butterworth-Heinemann, 2015, pp. 461–490. https://doi.org/10.1016/B978-0-12-411467-8.00013-1

Li L., Wang W., Shin E. et al. Design of tunable shunt and series interdigital capacitors based on vanadium dioxide thin film. Proceedings of 2017 IEEE National Aerospace and Electronics Conference (NAECON). USA, OH, Dayton, 2017, pp. 279–283. https://doi.org/10.1109/NAECON.2017.8268785

Givernaud J., Crunteanu A., Orlianges J. C. et al. Microwave power limiting devices based on the semiconductor-metal transition in vanadium-dioxide thin films. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 9, pp. 2352–2361. https://doi.org/10.1109/TMTT.2010.2057172

Tonkoshkur A. S., Ivanchenko A.V. Electrical properties of structures based on varistor ceramics and polymer nanocomposites with carbon filler. Journal of Advanced Dielectrics, 2019, vol. 9, no. 03, p. 1950023. https://doi.org/10.1142/S2010135X19500231

Bugaev A. A., Zakharchenia B. P., Chudnovskii, F. A. The Metal-Semiconductor Phase Transition and its Application. Leningrad, Nauka, 1979, 183 p. (Rus)

Shao Z., Cao X., Luo H., Jin P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Materials, 2018, vol. 10, no. 7, pp. 581–605. https://doi.org/10.1038/s41427-018-0061-2

Tutov E. A., Kryukov P. I., Zlomanov V. P. Features of conductivity of polycrystalline vanadium dioxide on alternating current. Condensed Matter and Interphases, 2014, vol. 16, no. 2, pp. 220–224. (Rus)

Berezina O. Y., Artyukhin D. V., Velichko A. A et al. Metal-semiconductor phase transition in undoper and doped vanadium dioxide films. Condensed Matter and Interphases, 2009, vol. 11, no. 3, pp. 194–197. (Rus)

Ivon A. I., Kolbunov V. R., Chernenko I. M. Vanadium dioxide ceramics. Inorganic Materials, 1996, vol. 32, no. 5, pp. 555–557.

Tonkoshkur A. S., Nakashidze L. V. [Problems of reliability of photoelectric components of solar batteries]. Vidnovluvana Energetika, 2018, no. 3, pp. 21–30. (Ukr)

Tilli M., Haapalinna A. Properties of Silicon. In book: Handbook of Silicon Based MEMS Materials and Technologies. Eds. by Tilli M. et al., Elsevier, 2020, pp. 3–18.

Lechner M. D. Polymers. In book: Springer handbook of condensed matter and materials data. Eds. by Martienssen W., Warlimont H., Springer, Berlin, 2005, pp. 477–522.

Chernyaev V.S., Shchetnikov E.N., Shveikin G.P., Gel’d P.V. [Heat capacity of cubic monoxide and vanadium oxycarbide] Izvestiya AN SSSR, Neorganicheskiye Materialy, 1968, vol. 4, no. 12, pp. 2117–2123. (Rus)

Chirvase D., Chiguvare Z., Knipper M. et al. Temperature dependent characteristics of poly (3 hexylthiophene)-fullerene based heterojunction organic solar cells. Journal of Applied Physics, 2003, vol. 93, no. 6, pp. 3376–3383. https://doi.org/10.1063/1.1545162

Musembi R. J., Rusu M., Mwabora J. M. et al. Intensity and temperature dependent characterization of eta solar cell. Physica Status Solidi (A), 2008, vol. 205, no. 7, pp. 1713–1718. https://doi.org/10.1002/pssa.200723466

Ivanchenko A. V., Tonkoshkur A. S. Changes in the characteristics of silicon photovoltaic cells of solar arrays after current overloads. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 3–4, pp. 19–25. (Rus) http://dx.doi.org/10.15222/TKEA2019.3-4.19

Gudkova A. V., Gubin S. V., Belokon’ V. I. [Thermal stabilization of solar cells for current-voltage characteristics measurement with the pulsed light source]. Open Information and Computer Integrated Technologies, 2012, no. 57, pp. 187–196. (Rus)

Shklyar V. I., Dubrovskaya V. V., Karpenko D. S. [Using of Solar Energy by Photovoltaic Systems]. Vidnovluvana Energetika, 2014, no. 3, pp. 39–48. (Rus).

Опубліковано
2021-09-07