Резистивні сенсори вологи на основі плівок наноцелюлози для біорозкладної електроніки

Ключові слова: наноцелюлоза, резистивний сенсор вологи, біорозкладна електроніка

Анотація

Синтезовано резистивні сенсори вологи, вологочутливий шар яких виготовлено з наноцелюлози. Дослідження показало, що наноцелюлоза проявляє вологочутливі характеристики, а отже, враховуючи її механічні характеристики, може бути використана для виготовлення на її основі елементів гнучкої електроніки, наприклад носимих сенсорів вологи медичного призначення (сенсори поту, частоти дихання тощо).

Посилання

Jung Y. H., Chang T.-H., Zhang H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. 2015, Nature Communications, vol. 6, iss. 1, аrticle 7170, https://doi.org/10.1038/ncomms8170

Lapshuda V. A., Koval V. M. Flexible and biodegradable sensors: materials, manufacturing technology and devices on its basis. KPI Science News, 2021, no. 2, pp. 16–27, https://doi.org/10.20535/kpisn.2021.2.229964

Koga H., Nogi M. Cellulose paper composites for flexible electronics. Chapter 6 in the book "Lignocellulosics", Elsevier, 2020, рр. 171–179, https://doi.org/10.1016/B978-0-12-804077-5.00011-7

Kafy A., Akther A., Shishir Md. I. R. еt al. Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors and Actuators A: Physical, 2016, vol. 247, рр. 221–226, https://doi.org/10.1016/j.sna.2016.05.045

Agate S., Joyce M., Lucia L., Pal L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites — A review. Carbohydrate Polymers, 2018, vol. 198, рр. 249–260. https://doi.org/10.1016/j.carbpol.2018.06.045

Hoeng F., Denneulin A., Bras J. Use of nanocellulose in printed electronics: a review. Nanoscale, 2016, vol. 8, iss. 27, рр. 13131– 13154, https://doi.org/10.1039/C6NR03054H

Barbash V. A., Yaschenko O. V., Shniruk O. M. Preparation and properties of nanocellulose from organosolv straw pulрр. Nanoscale Research Letters, 2017, vol. 12, iss. 1, аrticle 241, https://doi.org/ 10.1186/s11671-017-2001-4

Koval V., Barbash V., Dusheyko M. et al. Application of nanocellulose in humidity sensors for biodegradable electronics. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), pp. 02NS01-1-02NS01-5, https://doi.org/10.1109/NAP51477.2020.9309598

Barbash V. A., Yashchenko O. V., Gondovska A. S., Deykun I. M. Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. Applied Nanoscience, 2022, vol. 12, iss. 4, pp. 835–848, https://doi.org/10.1007/s13204-021-01749-z

Syrovy T., Maronova S., Kubersky Р. et al. Wide range humidity sensors printed on biocomposite films of cellulose nanofibril and poly(ethylene glycol). Journal of Applied Polymer Science, 2019, vol. 136, iss. 36, аrticle 47920, https://doi.org/10.1002/app.47920

Zhu P., Kuang Yu., Wei Y. et al. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chemical Engineering Journal, 2021, vol. 404, аrticle 127105, https://doi.org/10.1016/j.cej.2020.127105

Zhu B., Johansen V., Kamita G. et al. Hyperspectral imaging of photonic cellulose nanocrystal films: structure of local defects and implications for self-assembly pathways. ACS Nano, 2020, vol. 14, iss. 11, рр. 15361–15373, https://doi.org/10.1021/acsnano.0c05785

Yoshida A., Wanga Y.-F., Tachibana Sh. et al. Printed, all-carbon-based flexible humidity sensor using a cellulose nanofiber/graphene nanoplatelet composite. Carbon Trends, 2022, vol. 7, аrticle 100166, https://doi.org/10.1016/j.cartre.2022.100166

Zhu P., Liu Yu, Fang Zh. et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film. Langmuir, 2019, vol. 35, iss. 14, рр. 4834–4842, https://doi.org/10.1021/acs.langmuir.8b04259

Xu S., Yu W., Yao X. et al. Nanocellulose-assisted dispersion of graphene to fabricate poly(vinyl alcohol)/graphene nanocomposite for humidity sensing. Composites Science and Technology, 2016, vol. 131, рр. 67, https://doi.org/10.1016/j.compscitech.2016.05.014

Khalifa M., Wuzella G., Lammer H., Mahendran A. R. Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor. Synthetic Metals, 2020, vol. 266, рр. 116420, https://doi.org/10.1016/j.synthmet.2020.116420.

Barbash V., Yaschenko O. Preparation, properties and use of nanocellulose from non-wood plant materials. Chapter 4 in the book "Novel Nanomaterials", IntechOpen, 2020, 23 р., https://doi.org/10.5772/intechopen.94272.

Опубліковано
2022-12-16