Поліпшення зворотних характеристик кремнієвого варикапа за допомогою низькотемпературного гетерування

Ключові слова: нікель, омічний контакт, гетерування, варикап, структурні дефекти, зворотний струм

Анотація

Розглянуто причини та механізми деградації зворотних характеристик варикапа в процесі формування омічного контакту на основі нікелю. Досліджено вплив низькотемпературного гетерувального відпалу варикапних структур після формування омічного контакту на основі нікелю на рівень зворотного струму варикапів, а також проаналізовано можливі механізми цього впливу. Показано ефективність запропонованої технології з використанням гетерування щодо зниження рівня зворотних струмів і підвищення виходу придатних приладів.

Посилання

Bolic M., Drndarevic V. Digital gamma-ray spectroscopy based on FPGA technology. Nuclear Instruments and Methods in Physics Research A, 2002, vol. 482, iss. 3, pp. 761–766. https://doi.org/10.1016/S0168-9002(01)01925-8

Timoshenkov S. P., Boyko A. N., Gaev D. S., Kalmykov R. M. Integrated high-capacity varicap based on porous silicon. Izvestiyа vuzov. Elektronika, 2017, vol. 22, no. 1, pp. 15–19. (Rus)

Vikulin I.M., Stafeev V.I. Fizika Poluprovodnikovykh priborov [Physics of Semiconductor Devices]. Moscow, Radio i Svyaz', 1990, 264 p. (Rus)

Irha V.I. Fluctuation processes in varicaps. Proceedings of the O. S. Popov ОNAT, 2016, no. 1, pp. 15–21. (Ukr)

Savchenko M. P., Starovoitova O. V. Negative feedback circuit by noise for an autogenerator with varicaps. Vestnik Baltiiskogo federal'nogo universiteta im. I. Kanta. Ser.: Fiziko-matematicheskie i tekhnicheskie nauki, 2016, no. 2. pp. 66–69. (Rus)

Spiridonov A.B., Lytsoev S.V., Petruchuk I.Y. Development of MDP-varicap with charge transfer in the microwave range. Applied Physics, 2016, no. 3, p. 75–80. (Rus)

Kurnosov A. I., Yudin V. V. Tekhnologiya proizvodstva poluprovodnikovykh priborov i integral'nykh mikroskhem [Fabrication technology of semiconductor devices and integrated circuits]. Moscow, Vysshaya Shkola, 1986, 368 p. (Rus)

Pout Dzh., Tu K., Meyyer Dzh., Rozenberg R. Tonkiye plenki. Vzaimnaya diffuziya i reaktsii [Thin films. Mutual diffusion and reactions] / Ed by Dzh. Pouta. Moskow, Mir, 1982, 576 p. (Rus)

Litvinenko V. N., Bohach N. V. Defects and impurities in silicon and methods for their gettering. Visnyk of KhNTU, 2017, vol. 60, iss. 1, pp. 32–42. (Rus)

Ravi К.V. Imperfections and Impurities in Semiconductor Silicon. John Wiley & Sons, New York, 1981, 379 p.

Bakhadirkhanov M.K., Ismailov B.K. Hettering properties of clusters of nickel atoms in the silicon lattice. Devices, 2020. vol. 240, iss. 6, pp. 44–48. (Rus)

Vorobey R.Y., Gusev O.K., Tyavlovsky K.L., Shadurskaya L.I., Rusakevich D.A. Getterization of epitaxial structures with rare earth elements. 10th International Conference "Pryborostroenie-2017". Section 1. Measuring systems and devices, technical safety means. Minsk, 2017, pp. 73–74. (Rus)

Kharchenko V.A. The getters in silicon. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2018, vol. 21, iss. 1, рp. 5–17. https://doi.org/10.17073/1609-3577-2018-1-5-17 (Rus)

Litvinenko V. M., Bohach M. V. Modeling of heterization processes of fast-diffusing impurities in Schottky diode technology. Visnyk of KhNTU, 2019, vol. 68, no. 1, pp. 25–33. (Ukr)

Litvinenko V.M. Fizyka ta tekhnolohiya napivprovidnykovykh diodiv [Physics and Technology of Semiconductor Diodes]. Kherson, Vyshemirsky V.S., 2018, 184 p. (Ukr)

Litvinenko V.M. Investigation of the influence of seasonal factors on reverse currents of silicon varicaps. Visnyk of KhNTU, 2016, vol. 56, iss. 1, pр. 39–44. (Rus)

Nemtsev G.Z. Pekarev A.I., Chistyakov Yu.D., Burmistrov A.N. Gettering of point defects in semiconductor device manufacturing. Foreign Electronic Technology, 1981, vol. 245, iss. 311, pр. 3–63. (Rus)

Pilipenko V. A., Gorushko V. A., Petlitskiy A. N. et al. Methods and mechanisms of gettering of silicon structures in the production of integrated circuits. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2013, no. 2–3, pp. 43–57. (Rus).

Labunov V.A., Baranov I.L., Bondarenko V.P., Dorofeev A.M. Modern methods of gettering in semiconductor electronics technology. Foreign electronic technology, 1983, no. 11(270), pр. 3–66. (Rus)

Verkhovsky E.I. Methods for gettering impurities in silicon. Reviews on Electronic Technology. Ser. 2. Semiconductor Devices, 1981, iss. 8 (838), рр. 1–48. (Rus)

Bokhan Yu.I., Kamenkov V.S., Tolochko N.K. Dominant factors of laser gettering of silicon wafers. Semiconductors Physics and Technology, 2015. vol. 49, iss. 2, рp. 278–282. (Rus)

Vikulin I.M., Litvinenko V.N., Shutov S.V. et al. Enhancing parameters of silicon varicaps using laser gettering. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2018, no. 2, pр. 29–32. http://dx.doi.org/10.15222/TKEA2018.2.29

Pilipenko V.A., Vecher D.V., Ponaryadov V.V. et al. Influence of laser gettering on the structural and electrical parameters of epitaxial silicon layers. Vestnik of BSU. Ser. 1, 2007, iss. 2, pр. 39–42. (Rus)

Litvinenko V. N., Vikulin I.M., Gorbachev V.E. Іmprovement of the reverse characteristics of Schottky diodes using gettering. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 1–2, рp. 34–39. http://dx.doi.org/10.15222/TKEA2019.1-2.34

Litvinenko V.M., Vikulin I.M. Influence of surface properties on reverse characteristics of semiconductor devices. Visnyk of KhNTU, 2018, vol. 64, no. 1, pp. 46–56. (Ukr)

Litvinenko V. N., Вaganov Ye. A., Vikulin I.M., Gorbachev V.E. Influence of gettering on aluminum ohmic contact formation. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2020, no. 1–2, pр. 45–50. https://doi.org/10.15222/TKEA2020.1-2.45

Vorobyev Yu.V., Dobrovolskyi V.N., Strykha V.Y. Metody issledovaniya poluprovodnikov [Semiconductor research methods]. Kyiv, Vyshcha Shkola, 1988, 232 p. (Rus)

Murarka S.P. Silicides for VLSI Applications. Academic Press, 1983, 200 p.

Milnes A. G. Deep Impurities in Semiconductors. John Wiley & Sons, New York, 1973, 526 p.

Опубліковано
2023-05-30