Оптимізація конструкції кремнієвих сонячних елементів для роботи в режимі концентрації наземного сонячного випромінювання

Ключові слова: кремнієві сонячні елементи, концентроване сонячне випромінювання, фотоелектричні характеристики, установка

Анотація

Запропоновано вдосконалену топологію активного балансира, яка забезпечує додаткове балансування на рівні модулів, а також гнучку зміну способу балансування для його пришвидшення й збільшення надійності. Проведено моделювання швидкості балансування для різних топологій активних балансирів і підтверджено ефективність запропонованої топології.

Посилання

Ahmed S., Ali A., D’Angola A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability, 2024, vol. 16, p. 1749. https://doi.org/10.3390/su16051749

Casalicchio V., Manzolini G., Prina M. G., Moser D. from investment optimization to fair benefit distribution in renewable energy community modeling. Appl. Energy, 2022, vol. 310, p. 118447. https://doi.org/10.1016/j.apenergy.2021.118447

Stančin H., Mikulčić H., Wang X., Duić N. A review on alternative fuels in future energy system. Renewable & Sustainable Energy Reviews, 2020, vol. 128, p. 109927. https://doi.org/10.1016/j.rser.2020.109927

Hasan M. M., Hossain S., Mofijur M. et al. Harnessing solar power: a review of photovoltaic innovations, solar thermal systems, and the dawn of energy storage solutions. Energies, 2023, vol. 16, p. 6456. https://doi.org/ 10.3390/en16186456

Chang N. L., Ho-Baillie A. W. Y., Vak D. et al. Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol. Energy Mater. Sol. Cells, 2018, vol. 174, pp. 314 – 324. https://doi.org/10.1016/j.solmat.2017.08.038

Green M. A., Dunlop E. D., Yoshita M. Solar cell efficiency tables (Version 63). Progress in Photovoltaics Research and Applications, 2023, 32, p. 3 – 13. https://doi.org/10.1002/pip.3750

Ballif C., Haug F.-J., Boccard M. et al. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7, pp. 597 – 616. https://doi.org/10.1038/s41578-022-00510-4

Kostylyov V. P., Korkishko R. M. Melakh V. G. et al. [Silicon solar cells with diffusion-field barriers for use in concentrator plants]. Proc. of IX International Scientific Conference «Fundamental Basic of Nanoelectronics» Collection of Scientific Paper, Ukraine, Kharkiv — Odesa, 2017, pp. 124 – 127. (Ukr)

Rodat S., Thonig R. Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data. Clean Technol., 2024, vol. 6, pp. 365 – 378. https://doi.org/10.3390/ cleantechnol6010018

Yamada N., Hirai D. Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture. Progress in Photovoltaics: Research and Applications, 2016, vol. 24, iss. 6, pp. 846 – 854. https://doi.org/10.1002/pip.2765

Han X, Lv Y. Design and dynamic performance of a concentrated photovoltaic system with vapor chambers cooling. Appl Therm Eng., 2022, vol. 201, p. 117824. https://doi.org/10.1016/j.applthermaleng.2021.117824

Korkishko R.M., Kostylyov V.P., Chernenko V.V. et al. [Equipment for determining of photovoltaic parameters of silicon solar cells under concentrated solar irradiation]. Proc. of 25th ISPC «Modern information and electronic technologies», Ukraine, Odesa, 2024, pp. 67 – 69. (Ukr).

Sachenko A. V., Kostylyov V. P., Korkishko R. M. et al. Key parameters of textured silicon solar cells 26.6% photoconversion efficiency. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2021, vol. 24, no. 2, pp. 175 – 184. https://doi.org/10.15407/spqeo24.02.175

Sachenko A. V., Kostylyov V. P., Korkishko R. M. et al. Simulation and characterization of planar high-efficiency back contact silicon solar cells. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2021, vol. 24, no 3, pp. 319 – 327. https://doi.org/10.15407/spqeo24.03.319

Sachenko A. V., Kostylyov V. P., Vlasiuk V. M. et al. Optimization of textured silicon solar cells. 47th IEEE Photovoltaic Specialists Conference, Canada, Calgary, 2020, pp. 0719 – 0723. https://doi.org/10.1109/PVSC45281.2020.9300877

Sachenko A. V., Kostylyov V. P., Vlasiuk V. M. et al. Characterization and optimization of highly efficient silicon-based textured solar cells: theory and experiment. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), USA, FL, Fort Lauderdale, 2021, pp. 544 – 550. https://doi.org/10.1109/PVSC43889.2021.9518764

Kostylyov V. P., Korkishko R. M. Melakh V. G., Dvernikov B.F. [Features of the technology for manufacturing silicon solar cells with diffusion-field barriers for use in concentrated radiation]. Proc. of International conference «Semiconductor materials, information technology and photovoltaics», Ukraine, Kremenchuk, 2016, pp. 51 – 52. (Ukr).

Sachenko A. V., Kostylyov V. P., Gerasymenko M. V. et al. Analysis of the silicon solar cells efficiency. Type of doping and level optimization. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016, vol. 19, no. 1, pp. 67 – 74. https://doi.org/10.15407/spqeo19.01.067

Mackel H., Varner K. On the determination of the emitter saturation current density from lifetime measurements of silicon devices. Prog. Photovolt.: Res. Appl., 2013, vol. 21, no. 5, pp. 850 – 866. https://doi.org/10.1002/pip.2167

Richter A., Benick J., Feldmann F. et al. n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater Sol Cells., 2017, vol. 173, pp. 96 – 105. https://doi.org/10.1016/j.solmat.2017.05.042

Fahrenbruch A. L., Bube R. H. Fundamentals of solar cells: Photovoltaic solar energy conversion. Academic Press, New York, 1983, 559 р.

Опубліковано
2024-06-28