X-ray radiation during pulsed laser treatment of opal matrices

  • A. F. Belyanin Central Research Technological Institute “Technomash”, Moscow, Russia
  • V. V. Borisov Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Moscow, Russia
  • V. V. Popov Lomonosov Moscow State University, Moscow, Russia
Keywords: opal matrix, laser radiation, X-ray radiation, energy spectrum

Abstract

The paper presents the structure and preparation conditions of opal matrices (ordered 3D-lattice packing of X-ray amorphous SiO2 spheres with a diameter of ≈250 nm), as well as experimental data on nonlinear optical effects in opal matrices with pulsed laser excitation at wavelengths: 1040 nm, 510 nm in conjunction with 578 nm, and 366 nm. The authors investigate the energy spectra of X-ray radiation induced in the samples by laser irradiation.

References

Armstronga E., O’Dwyer C. Artificial opal photonic crystals and inverse opal structures — fundamentals and applications from optics to energy storage. Journal of materials chemistry C, 2015, vol. 3, no. 24, pp. 6109–6143, https://doi.org/10.1039/c5tc01083g

Samoylovich M. I., Belyanin А. F., Bagdasaryan A. S., Bovtun V. Structure and dielectric properties of nanocomposites: opal matrix – titanium oxide and rare-earth titanates. Fine Chemical Technologies, 2016, vol. 11, no. 2, pp. 66–73. URL: https://finechemtech.mirea.ru/upload/medialibrary/c02/09_Samoylovich_2016_No-2.pdf

Tuyen L. D., Wu C. Y., Anh T. K. et al. Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals. Journal of Experimental Nanoscience, 2012, vol. 7, no. 2, pp. 198–204, https://doi.org/10.1080 /17458080.2010.515249

Miguez H., Blanco A., Lopez C. et al. Face centered cubic photonic bandgap materials based on opal-semiconductor composites. Journal of Lightwave Technology, 1999, vol. 17, no. 11, pp. 1975–1981, https://doi.org/10.1109/50.802983

Nishijima Y., Ueno K., Juodkazis S. et al. Inverse silica opal photonic crystals for optical sensing applications. Optics Express, 2007, vol. 15, no. 20, pp. 12979–12988, https://doi.org/10.1364/OE.15.012979

Sarychev A. K., Shalaev V. M. Electrodynamics of Metamaterials. World Scientific and Imperial College Press, 2007, 200 p., http://dx.doi.org/10.1142/4366

Tcherniega N. V., Samoylovich M. I., Belyanin A. F. et al. Generation of electromagnetic and acoustic emissions in nanostructures systems. Nano- and Microsystems Technology, 2011, no. 4, pp. 21–31. (Rus)

Chernega N.V. et al. The Method of Generating Pulsed X-Ray Radiation. Pat. 2469516 RU. 10.12.2012, bul. no. 34. (Rus)

Vikhlyaev D.A., Gavrilov D.S., Eliseev M.V. et al. Soft X-ray spectrometer based on spherical grazing mirrors for plasma investigation on SOKOL-P laser facility. Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion, 2010, no. 2, pp. 57–63. URL: http://vant.iterru. ru/vant_2010_2/7.pdf (Rus)

Samoylovich M. I., Kleshcheva S.M., Belyanin A. F. et al. 3D-nanocomposites based on ordered packing of silica nanospheres. Nano- and Microsystems Technology, 2004, no. 6, pp. 3–7. (Rus)

Chernega N.V. et al. Device for Generating Directional Pulsed X-Ray Radiation. Pat. 2480159 RU. 27.04.2013, bul. no. 12. (Rus)

Camara C. G., Escobar J. V., Hird J. R., Putterman S. J. Sticky tape generates X rays. Nature 455, 2008, pp. 1089–1092. http://dx.doi.org/10.1038/news.2008.1185

Published
2018-12-28