Дослідження можливості використання матеріалів на основі CdTeSe для детекторів іонізуючих випромінювань

Ключові слова: CdTeSe, моделювання, детекторні властивості, електрофізичні властивості, дефекти структури, глибокі рівні

Анотація

Представлено результати кількісних досліджень впливу вмісту домішок та структурних дефектів на електрофізичні та детекторні властивості CdTe0,9Se0,1 і CdTe0,95Se0,05, в тому числі з додаванням Mn, Mg, Zn. Досліджено вплив дефектів на питомий опір, концентрацію вільних носіїв заряду, рівень Фермі, час життя нерівноважних носіїв заряду та ефективність збору зарядів у детекторах випромінювань на основі CdTeSe:In при температурі 25°С. Встановлено залежності параметрів від вмісту домішок та вакансій кадмію і телуру. Розглянуто спосіб досягнення високоомного стану, характерного для матеріалу детекторної якості.

Посилання

Mycielski A., Wardak A., Kochanowska D. et al. CdTe-based crystals with Mg, Se, or Mn as materials for X and gamma ray detectors: Selected physical properties. Progress in Crystal Growth and Characterization of Materials. 2021, vol. 67, iss. 4, 100543. https://doi.org/10.1016/j.pcrysgrow.2021.100543

Jeong A., Seo J., Shin G. et al. Feasibility study of CdMnTeSe based diagnostic X-ray detector. Nuclear Engineering and Technology, 2024, vol. 56, iss. 11, рp. 4748–4754. https://doi.org/10.1016/j.net.2024.06.038

Byun J., Seo J., Park B. Growth and characterization of detector-grade CdMnTeSe. Nuclear Engineering and Technology, 2022, vol. 54, iss. 11, рp. 4215–4219. https://doi.org/10.1016/j.net.2022.06.007

Roy U. N., James, R. B. CdZnTeSe: Recent Advances for Radiation Detector Applications. In book: Abbene L., Iniewski K. (eds) High-Z Materials for X-ray Detection, Material Properties and Characterization Techniques. Cham, Springer International Publishing, 2023, pр. 155–170. https://doi.org/10.1007/978-3-031-20955-0_8

Yu P., Zhao S., Gao P. et al. Growth and characterization of large-size CdMgTe single crystals doped with different in amounts. Vacuum, 2024, vol. 220, 112860. https://doi.org/10.1016/j.vacuum.2023.112860

Wardak A., Kochanowska D. M., Kochański M. et al. Effect of doping and annealing on resistivity, mobility-lifetime product, and detector response of (Cd,Mn)Te. Journal of Alloys and Compounds, 2023, vol. 936, p. 168280. https://doi.org/10.1016/j.jallcom.2022.168280

Luan L., Gao L., Lv H. et al. Analyses of crystal growth, optical, electrical, thermal and mechanical properties of an excellent detector-grade Cd0. 9Mn0. 1Te:V crystal. Scientific Reports, 2020, vol. 10, iss. 1, p. 2749. https://doi.org/10.1038/s41598-020-59612-0

Yu P., Jiang B., Chen Y. et al. Growth and characterization of room temperature radiation detection material Cd0. 95Mg0. 05Te. Journal Crystal Growth, 2020, vol. 543, 125719. https://doi.org/10.1016/j.jcrysgro.2020.125719

Camarda G. S., Yang G., Bolotnikov A. E. et al. Characterization of detector-grade CdTe0,9Se0,1 crystals. Proceeding of the 2013 Materials Research Society Spring Meeting, USA, San Francisco, California, 2013.

Kuciauskas D., Nardone M., Bothwell A. et al. Why Increased CdSeTe Charge Carrier Lifetimes and Radiative Efficiencies did not Result in Voltage Boost for CdTe Solar Cells. Advanced Energy Materials, 2023, vol. 13, 2301784 https://doi.org/10.1002/aenm.202301784

Kim K., Kim Y., F. Jan, Fochuk P. et al. Enhanced hole mobility-lifetime product in selenium-added CdTe compounds. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, vol. 1053, 168363. https://doi.org/10.1016/j.nima.2023.168363

Kavanagh S. R., Walsh A., Scanlon D. O. Rapid Recombination by Cadmium Vacancies in CdTe. ACS Energy Letters, 2021, vol. 6, iss. 4, pр. 1392–1398. https://doi.org/10.1021/acsenergylett.1c00380

Orellana W., Menéndez-Proupin E., Flores M. A. Self-compensation in chlorine-doped CdTe. Sci. Rep. 2019, vol. 9, 9194. https://doi.org/10.1038/s41598-019-45625-x

Menéndez-Proupin E., Casanova-Páez M., Montero-Alejo A. et al. Symmetry and thermodynamics of tellurium vacancies in cadmium telluride. Phys. B: Condens. Matter, 2019, vol. 568, pр. 81–87. https://doi.org/10.1016/j.physb.2019.01.013

Selvaraj S. C., Gupta S., Caliste D., Pochet P. Passivation mechanism in CdTe solar cells: The hybrid role of Se. Appl. Phys. Lett. 2021, vol. 119, iss. 6, 062105.https://doi.org/10.1063/5.0058290

Gul R., Roy U. N., Egarievwe S. U. et al. Point defects: Their influence on electron trapping, resistivity, and electron mobility-lifetime product in CdTexSe1–x detectors, Journal of Applied Physics, 2016, vol. 119, iss. 2, 025702. http://dx.doi.org/10.1063/1.4939647

Drabo M. L., Egarievwe S. U., Roy U. N. et al. Study of CdZnTeSe gamma-ray detector under various bias voltages. Materials Sciences and Applications, 2020, vol. 11, iss. 8, p. 553–559. https://doi.org/10.4236/msa.2020.118036

Pipek J., Betušiak M., Belas E. et al. Charge transport and space-charge formation in Cd1−xZnxTe1−ySey radiation detectors. Physical Review Applied, 2021, vol. 15, iss. 5, 054058 https://doi.org/10.1103/PhysRevApplied.15.054058

Luan L., He Y., Zheng D. et al. Defects, electronic properties, and α particle energy spectrum response of the Cd0. 9Mn0. 1Te:V single crystal. Journal of Materials Science: Materials in Electronics, 2020, vol. 31, iss. 16, рp. 1179–4487. https://doi.org/10.1007/s10854-020-02996-6

Kondrik A. I., Kovtun G. P. Influence of impurities and structural defects on electrophysical and detector properties of CdTe and CdZnTe. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 5–6, рр. 43–50. (Rus) https://dx.doi.org/10.15222/TKEA2019.5-6.43

Jingxiu Y., Su-Huai W. First-principles study of the band gap tuning and doping control in CdSexTe1−x alloy for high efficiency solar cell. Chinese Physics B, 2019, vol. 28, iss. 8, 086106, https://dx. doi.org/10.1088/1674-1056/28/8/086106

Knoll G. F. Radiation Detection and Measurement. John Wiley & Sons, Inc., 2010, 829 p.

Park B., Kim Y., Seo J. et al. Bandgap engineering of Cd1–xZnxTe1–ySey (0https://doi.org/10.1016/j.nima.2022.166836

Roy U. N., Camarda G. S., Cui Y. et al. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications. Scientific Reports, 2019, vol. 9, iss. 1, 1620. https://doi.org/10.1038/s41598-018-38188-w

Mycielski A., Burger A., Sowinska M. et al. Is the (Cd,Mn)Te crystal a prospective material for X-ray and γ-ray detectors? Phys. Stat. Sol. (c). 2005, vol. 2, iss. 5, pр. 1578–1585. https://doi.org/10.1002/pssc.200460838

Castaldini A., Cavallini A., Fraboni B. Deep levels in CdTe and CdZnTe. J. Appl. Phys. 1998, vol. 83, iss. 4, рp. 2121–2126. https://doi.org/10.1063/1.366946

Fiederle M., Ebling D., Eiche C., Hofmann D. M. et al. Comparison of CdTe, Cd0. 9Zn0. 1Te and CdTe0,9Se0,1 crystals: Application for γ- and X-ray detectors. J. Cryst. Growth. 1994, vol. 138, iss. 1–2, рp. 529–533. https://doi.org/10.1016/0022-0248(94)90863-X

Gul R., Roy U. N., Camarda G. S. et al. A comparison of point defects in Cd1-xZnxTe1-ySey crystals grown by bridgman and traveling heater methods. J. Appl. Phys. 2017, vol. 121, iss. 12, 125705. https://doi.org/10.1063/1.4979012

Kondrik O. I., Solopikhin D. A. The composition of impurities and defects in Cd1-xMgxTe:In, necessary to ensure stable detector properties. Problems of Atomic Science and Technology. 2024. №4(152), pр. 34–39. https://doi.org/10.46813/2024-152-034

Roy, U. N., Camarda, G. S., Cui, Y. et al. Impact of selenium addition to the cadmium-zinc-telluride matrix for producing high energy resolution X-and gamma-ray detectors. Sci Rep. 2021, vol. 11, 10338. https://doi.org/10.1038/s41598-021-89795-z

Опубліковано
2024-12-27